Perceptron (unfinished)
This commit is contained in:
73
src/machine_learning/perceptron/Perceptron.java
Normal file
73
src/machine_learning/perceptron/Perceptron.java
Normal file
@ -0,0 +1,73 @@
|
||||
package machine_learning.perceptron;
|
||||
|
||||
import java.util.List;
|
||||
|
||||
public class Perceptron
|
||||
{
|
||||
public void learn(List<Vector> positives, List<Vector> negatives)
|
||||
{
|
||||
var weight = this.getInitializationVector(positives, negatives);
|
||||
|
||||
do
|
||||
{
|
||||
for (var x : positives)
|
||||
{
|
||||
if (weight.scalar(x) <= 0)
|
||||
{
|
||||
weight = weight.add(x);
|
||||
}
|
||||
}
|
||||
|
||||
for (var x : negatives)
|
||||
{
|
||||
if (weight.scalar(x) > 0)
|
||||
{
|
||||
weight = weight.subtract(x);
|
||||
}
|
||||
}
|
||||
|
||||
System.out.println(weight);
|
||||
}
|
||||
while (elementsAreCorrectClassified(positives, weight, 1) && elementsAreCorrectClassified(negatives, weight, 0));
|
||||
|
||||
System.out.println("-----------------------------------");
|
||||
System.out.println("-- All are classified correctly. --");
|
||||
System.out.println("-----------------------------------");
|
||||
}
|
||||
|
||||
private Vector getInitializationVector(List<Vector> positives, List<Vector> negatives)
|
||||
{/*
|
||||
var a = new Vector(positives.get(0).dimension());
|
||||
for (var x : positives)
|
||||
{
|
||||
a = a.add(x);
|
||||
}
|
||||
|
||||
var b = new Vector(positives.get(0).dimension());
|
||||
for (var x : negatives)
|
||||
{
|
||||
b = b.add(x);
|
||||
}
|
||||
|
||||
return a.subtract(b);*/
|
||||
|
||||
return new Vector(positives.get(0).dimension());
|
||||
}
|
||||
|
||||
private boolean elementsAreCorrectClassified(List<Vector> vectors, Vector weight, int expectedClass)
|
||||
{
|
||||
int actualClass;
|
||||
|
||||
for (var x : vectors)
|
||||
{
|
||||
actualClass = weight.scalar(x) > 0 ? 1 : 0;
|
||||
|
||||
if (actualClass != expectedClass)
|
||||
{
|
||||
return false;
|
||||
}
|
||||
}
|
||||
|
||||
return true;
|
||||
}
|
||||
}
|
90
src/machine_learning/perceptron/Vector.java
Normal file
90
src/machine_learning/perceptron/Vector.java
Normal file
@ -0,0 +1,90 @@
|
||||
package machine_learning.perceptron;
|
||||
|
||||
import java.util.ArrayList;
|
||||
import java.util.List;
|
||||
import java.util.Objects;
|
||||
import java.util.stream.Collectors;
|
||||
import java.util.stream.IntStream;
|
||||
|
||||
public class Vector
|
||||
{
|
||||
private List<Double> values;
|
||||
|
||||
public Vector(int dim)
|
||||
{
|
||||
this.values = new ArrayList<>();
|
||||
|
||||
for (int i = 0; i < dim; i++)
|
||||
{
|
||||
this.values.add(0d);
|
||||
}
|
||||
}
|
||||
|
||||
public Vector(List<Double> values)
|
||||
{
|
||||
this.values = values;
|
||||
}
|
||||
|
||||
public int dimension()
|
||||
{
|
||||
return this.values.size();
|
||||
}
|
||||
|
||||
public Vector add(Vector b)
|
||||
{
|
||||
return new Vector(IntStream.range(0,
|
||||
this.values.size())
|
||||
.mapToObj(i -> this.values.get(i) + b.values.get(i))
|
||||
.collect(Collectors.toCollection(ArrayList::new))
|
||||
);
|
||||
|
||||
}
|
||||
|
||||
public Vector subtract(Vector b)
|
||||
{
|
||||
return new Vector(IntStream.range(0,
|
||||
this.values.size())
|
||||
.mapToObj(i -> this.values.get(i) - b.values.get(i))
|
||||
.collect(Collectors.toCollection(ArrayList::new))
|
||||
);
|
||||
}
|
||||
|
||||
public double scalar(Vector b)
|
||||
{
|
||||
return IntStream.range(0,
|
||||
this.values.size())
|
||||
.mapToDouble(i -> this.values.get(i) * b.values.get(i))
|
||||
.sum();
|
||||
}
|
||||
|
||||
@Override
|
||||
public boolean equals(Object o)
|
||||
{
|
||||
if (this == o)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
if (o == null || getClass() != o.getClass())
|
||||
{
|
||||
return false;
|
||||
}
|
||||
|
||||
Vector vector = (Vector) o;
|
||||
|
||||
return Objects.equals(values, vector.values);
|
||||
}
|
||||
|
||||
@Override
|
||||
public int hashCode()
|
||||
{
|
||||
return values != null ? values.hashCode() : 0;
|
||||
}
|
||||
|
||||
@Override
|
||||
public String toString()
|
||||
{
|
||||
return values.toString()
|
||||
.replace("[", "(")
|
||||
.replace("]", ")");
|
||||
}
|
||||
}
|
Reference in New Issue
Block a user