ki_rwu_java/test/machine_learning/perceptron/PerceptronTest.java
2022-06-23 22:29:19 +02:00

60 lines
1.6 KiB
Java
Executable File

package machine_learning.perceptron;
import machine_learning.DataClass;
import machine_learning.Vector;
import org.junit.jupiter.api.*;
import java.util.ArrayList;
import java.util.List;
@TestInstance(TestInstance.Lifecycle.PER_CLASS)
class PerceptronTest
{
List<Vector> positives;
List<Vector> negatives;
Perceptron perceptron;
@BeforeAll
void initLearnData()
{
double biasUnit = 1d;
this.positives = new ArrayList<>(List.of(
new Vector(8d, 4d, biasUnit),
new Vector(8d, 6d, biasUnit),
new Vector(9d, 2d, biasUnit),
new Vector(9d, 5d, biasUnit))
);
this.negatives = new ArrayList<>(List.of(
new Vector(6d, 1d, biasUnit),
new Vector(7d, 3d, biasUnit),
new Vector(8d, 2d, biasUnit),
new Vector(9d, 0d, biasUnit))
);
this.perceptron = new Perceptron();
this.perceptron.learn(this.positives, this.negatives);
}
@Test
void shouldClassifyVectorCorrectAsNegative()
{
var vector = new Vector(0d, 0d, 1d);
var actualClass = this.perceptron.classify(vector);
var expectedClass = DataClass.NEGATIVE;
Assertions.assertEquals(expectedClass, actualClass);
}
@Test
void shouldClassifyVectorCorrectAsPositive()
{
var vector = new Vector(9d, 3d, 1d);
var actualClass = this.perceptron.classify(vector);
var expectedClass = DataClass.POSITIVE;
Assertions.assertEquals(expectedClass, actualClass);
}
}