ki_rwu_java/test/machine_learning/nearest_neighbour/KNearestNeighbourTest.java

62 lines
1.8 KiB
Java

package machine_learning.nearest_neighbour;
import machine_learning.Vector;
import org.junit.jupiter.api.BeforeAll;
import org.junit.jupiter.api.Test;
import org.junit.jupiter.api.TestInstance;
import java.util.ArrayList;
import java.util.Arrays;
import java.util.List;
import java.util.stream.Stream;
import static org.junit.jupiter.api.Assertions.*;
@TestInstance(TestInstance.Lifecycle.PER_CLASS)
class KNearestNeighbourTest
{
List<Vector> positives;
List<Vector> negatives;
@BeforeAll
void initLearnData()
{
this.positives = new ArrayList<>(List.of(
new Vector(8d, 4d),
new Vector(8d, 6d),
new Vector(9d, 2d),
new Vector(9d, 5d))
);
this.negatives = new ArrayList<>(List.of(
new Vector(6d, 1d),
new Vector(7d, 3d),
new Vector(8d, 2d),
new Vector(9d, 0d))
);
}
@Test
public void shouldReturnCorrectClassForVectorWithKEquals3()
{
var kNearestNeighbour = new KNearestNeighbour((a ,b) -> Math.abs(a.get(0) - b.get(0)) + Math.abs(a.get(1) - b.get(1)), 3);
var vector = new Vector(8, 3.5);
var actualClass = kNearestNeighbour.kNearestNeighbour(this.positives, this.negatives, vector);
var expectedClass = DataClass.NEGATIVE;
assertEquals(expectedClass, actualClass);
}
@Test
public void shouldReturnCorrectClassForVectorWithKEquals5()
{
var kNearestNeighbour = new KNearestNeighbour((a ,b) -> Math.abs(a.get(0) - b.get(0)) + Math.abs(a.get(1) - b.get(1)), 5);
var vector = new Vector(8, 3.5);
var actualClass = kNearestNeighbour.kNearestNeighbour(this.positives, this.negatives, vector);
var expectedClass = DataClass.POSITIVE;
assertEquals(expectedClass, actualClass);
}
}