Compare commits
10 Commits
437c2a234e
...
64c521d85c
Author | SHA1 | Date | |
---|---|---|---|
64c521d85c | |||
6fd9d79e94 | |||
6e16beff1a | |||
e62d69d16b | |||
765029b385 | |||
7ed683389b | |||
773013102a | |||
bf4bfcdf71 | |||
1ec72c355b | |||
eb3271b0d9 |
@ -41,7 +41,7 @@ und eignen sich daher gut dafür sich die Dinge vorzustellen.
|
||||
Auch deshalb beschränkt man sich häufig auf diese, wenn man einer Person Mathematik nahe bringen möchte.
|
||||
Auch spielt das Rechnen in unserem Alltag an der Supermarktkasse oder beim Zählen eine große Rolle.
|
||||
|
||||
Mathematik zählt wie die [Informatik](/informatik/informatik.md) zu den *Struktur*- bzw. *Formalwissenschaften*.
|
||||
Mathematik zählt wie die [Informatik](/docs/informatik/) zu den *Struktur*- bzw. *Formalwissenschaften*.
|
||||
Sie nimmt damit eine Sonderrolle unter den Wissenschaften ein und wird manchmal auch als *__die__ exakte* Wissenschaft betrachtet.
|
||||
Denn anders, als bei anderen Wissenschaften beruhen die Erkenntnisse auf einem logischen Beweis.
|
||||
Ein wahrer logischer Beweis ist prinzipbedingt endgültig und allgemeingültig wahr.
|
@ -287,17 +287,17 @@ Die tatsächliche semantische Äquivalenz lässt sich leicht durch aufstellen ei
|
||||
:::tip Wichtige semantische Äquivalenzen
|
||||
|
||||
1. $$
|
||||
\begin{align*}
|
||||
\begin{align*}
|
||||
\begin{aligned}
|
||||
x \wedge y &\equiv y \wedge x\\
|
||||
x \vee y &\equiv y \vee x\\
|
||||
x \leftrightarrow y &\equiv y \leftrightarrow x
|
||||
\end{aligned}
|
||||
&&\text{Kommutativität}
|
||||
\end{align*}
|
||||
$$
|
||||
\end{align*}
|
||||
$$
|
||||
2. $$
|
||||
\begin{align*}
|
||||
\begin{align*}
|
||||
\begin{aligned}
|
||||
x \wedge (y \wedge z) &\equiv (x \wedge y) \wedge z\\
|
||||
x \vee (y \vee z) &\equiv (x \vee y) \vee z\\
|
||||
@ -305,37 +305,37 @@ $$
|
||||
&\equiv (x \leftrightarrow y) \leftrightarrow z
|
||||
\end{aligned}
|
||||
&&\text{Assoziativität}
|
||||
\end{align*}
|
||||
$$
|
||||
\end{align*}
|
||||
$$
|
||||
3. $$
|
||||
\begin{align*}
|
||||
\begin{align*}
|
||||
\begin{aligned}
|
||||
x \wedge (y \vee z) &\equiv (x \wedge y) \vee (x \wedge z)\\
|
||||
x \vee (y \wedge z) &\equiv (x \vee y) \wedge (x \vee z)
|
||||
\end{aligned}
|
||||
&&\text{Distributivität}
|
||||
\end{align*}
|
||||
$$
|
||||
\end{align*}
|
||||
$$
|
||||
4. $$
|
||||
\begin{align*}
|
||||
\begin{align*}
|
||||
\begin{aligned}
|
||||
x \wedge (x \vee y) &\equiv x\\
|
||||
x \vee (x \wedge y) &\equiv x
|
||||
\end{aligned}
|
||||
&&\text{Absorption}
|
||||
\end{align*}
|
||||
$$
|
||||
\end{align*}
|
||||
$$
|
||||
5. $$
|
||||
\begin{align*}
|
||||
\begin{align*}
|
||||
\begin{aligned}
|
||||
x \wedge x &\equiv x\\
|
||||
x \vee x &\equiv x
|
||||
\end{aligned}
|
||||
&&\text{Idempotenz}
|
||||
\end{align*}
|
||||
$$
|
||||
\end{align*}
|
||||
$$
|
||||
6. $$
|
||||
\begin{align*}
|
||||
\begin{align*}
|
||||
\begin{aligned}
|
||||
\neg(\neg x) &\equiv x\\
|
||||
\neg(x \rightarrow y) &\equiv x \wedge \neg y\\
|
||||
@ -344,19 +344,19 @@ $$
|
||||
\equiv x \leftrightarrow \neg y
|
||||
\end{aligned}
|
||||
&&\text{Verneinung}
|
||||
\end{align*}
|
||||
$$
|
||||
\end{align*}
|
||||
$$
|
||||
7. $$
|
||||
\begin{align*}
|
||||
\begin{align*}
|
||||
\begin{aligned}
|
||||
\neg(x \wedge y) &\equiv \neg x \vee \neg y\\
|
||||
\neg(x \vee y) &\equiv \neg x \wedge \neg y
|
||||
\end{aligned}
|
||||
&&\text{De Morgan'sche Regeln}
|
||||
\end{align*}
|
||||
$$
|
||||
\end{align*}
|
||||
$$
|
||||
8. $$
|
||||
\begin{align*}
|
||||
\begin{align*}
|
||||
\begin{aligned}
|
||||
x \leftrightarrow y &\equiv (x \rightarrow y) \wedge (y \rightarrow x)\\
|
||||
x \rightarrow y &\equiv \neg x \vee y\\
|
||||
@ -364,37 +364,37 @@ $$
|
||||
x \vee y &\equiv \neg(\neg x \wedge \neg y)
|
||||
\end{aligned}
|
||||
&&\text{Elimination}
|
||||
\end{align*}
|
||||
$$
|
||||
\end{align*}
|
||||
$$
|
||||
9. $$
|
||||
\begin{align*}
|
||||
\begin{align*}
|
||||
\begin{aligned}
|
||||
x \rightarrow y \equiv \neg y \rightarrow \neg x
|
||||
\end{aligned}
|
||||
&&\text{Kontraposition}
|
||||
\end{align*}
|
||||
$$
|
||||
\end{align*}
|
||||
$$
|
||||
10. $$
|
||||
\begin{align*}
|
||||
\begin{align*}
|
||||
\begin{aligned}
|
||||
\neg f &\equiv w\\
|
||||
\neg w &\equiv f
|
||||
\end{aligned}
|
||||
&&
|
||||
\end{align*}
|
||||
$$
|
||||
\end{align*}
|
||||
$$
|
||||
11. $$
|
||||
\begin{align*}
|
||||
\begin{align*}
|
||||
\begin{aligned}
|
||||
x \wedge \neg x &\equiv f\\
|
||||
x \vee \neg x &\equiv w\\
|
||||
x \leftrightarrow \neg x &\equiv f
|
||||
\end{aligned}
|
||||
&&
|
||||
\end{align*}
|
||||
$$
|
||||
\end{align*}
|
||||
$$
|
||||
12. $$
|
||||
\begin{align*}
|
||||
\begin{align*}
|
||||
\begin{aligned}
|
||||
w \wedge x &\equiv x\\
|
||||
f \wedge x &\equiv f\\
|
||||
@ -402,10 +402,10 @@ $$
|
||||
f \vee x &\equiv x
|
||||
\end{aligned}
|
||||
&&
|
||||
\end{align*}
|
||||
$$
|
||||
\end{align*}
|
||||
$$
|
||||
13. $$
|
||||
\begin{align*}
|
||||
\begin{align*}
|
||||
\begin{aligned}
|
||||
f \rightarrow x &\equiv w\\
|
||||
w \rightarrow x &\equiv x\\
|
||||
@ -413,17 +413,17 @@ $$
|
||||
x \rightarrow w &\equiv w
|
||||
\end{aligned}
|
||||
&&
|
||||
\end{align*}
|
||||
$$
|
||||
\end{align*}
|
||||
$$
|
||||
14. $$
|
||||
\begin{align*}
|
||||
\begin{align*}
|
||||
\begin{aligned}
|
||||
f \leftrightarrow x &\equiv \neg x\\
|
||||
w \leftrightarrow x &\equiv x
|
||||
\end{aligned}
|
||||
&&
|
||||
\end{align*}
|
||||
$$
|
||||
\end{align*}
|
||||
$$
|
||||
|
||||
:::
|
||||
|
@ -32,8 +32,8 @@ Der Begriff der *Unendlichkeit* wurde dabei von ihm in besonderem Maße geprägt
|
||||
|
||||
Allerdings führte das Cantor'sche Modell der Mengenlehre, auch *naive Mengenlehre* genannt, auch zu *Antinomien* (Widersprüchen).
|
||||
[Bertrand Russell](https://de.wikipedia.org/wiki/Bertrand_Russell) entdeckte diese Widersprüche und machte sie publik.
|
||||
Die heutige Mathematik beruht auf einer axiomatisierten Mengenlehre und wird auch *Zermelo-Fraenkel-Mengenlehre* genannt.
|
||||
Doch ist die naive Mengenlehre ein Teil der ZF-Mengenlehre und daher nach wie vor ein einfacher und guter Zugang.
|
||||
Die heutige Mathematik beruht auf einer axiomatisierten Mengenlehre und wird auch *Zermelo-Fraenkel-Mengenlehre mit Auswahlaxiom* genannt.
|
||||
Doch ist die naive Mengenlehre ein Teil der ZFC-Mengenlehre (**Z**ermelo, **F**raenkel, Axiom of **C**hoice) und daher nach wie vor ein einfacher und guter Zugang.
|
||||
|
||||
## Naive Mengenlehre nach Cantor
|
||||
:::note Menge
|
@ -1,19 +1,19 @@
|
||||
// @ts-check
|
||||
// Note: type annotations allow type checking and IDEs autocompletion
|
||||
|
||||
const lightCodeTheme = require('prism-react-renderer/themes/github');
|
||||
const darkCodeTheme = require('prism-react-renderer/themes/dracula');
|
||||
import remarkMath from 'remark-math';
|
||||
import rehypeKatex from 'rehype-katex';
|
||||
|
||||
const math = require('remark-math');
|
||||
const katex = require('rehype-katex');
|
||||
const lightCodeTheme = require('prism-react-renderer').themes.github;
|
||||
const darkCodeTheme = require('prism-react-renderer').themes.dracula;
|
||||
|
||||
/** @type {import('@docusaurus/types').Config} */
|
||||
const config = {
|
||||
export default {
|
||||
title: 'Mathematik, Informatik und Programmierung',
|
||||
tagline: 'Mathematik und Informatik sind cool',
|
||||
url: 'https://www.niklas-birk.de',
|
||||
baseUrl: '/',
|
||||
onBrokenLinks: 'throw',
|
||||
onBrokenLinks: 'warn',
|
||||
onBrokenMarkdownLinks: 'warn',
|
||||
favicon: 'img/niklas-birk-icon.ico',
|
||||
|
||||
@ -38,8 +38,8 @@ const config = {
|
||||
// docs: false,
|
||||
docs: {
|
||||
sidebarPath: require.resolve('./sidebars.js'),
|
||||
remarkPlugins: [math],
|
||||
rehypePlugins: [katex],
|
||||
remarkPlugins: [remarkMath],
|
||||
rehypePlugins: [rehypeKatex],
|
||||
// // Please change this to your repo.
|
||||
// // Remove this to remove the "edit this page" links.
|
||||
// // editUrl:
|
||||
@ -118,21 +118,21 @@ const config = {
|
||||
items: [
|
||||
{
|
||||
label: 'Twitter',
|
||||
href: 'https://twitter.com/SirNik_OdTW',
|
||||
href: 'https://twitter.com/theoremofnik',
|
||||
},
|
||||
{
|
||||
label: 'Mastodon',
|
||||
href: 'https://mathstodon.xyz/web/@SirNik',
|
||||
},
|
||||
{
|
||||
label: 'Twitch',
|
||||
href: 'https://www.twitch.tv/theoremofnik',
|
||||
},
|
||||
],
|
||||
},
|
||||
{
|
||||
title: 'More',
|
||||
title: 'Mehr von mir',
|
||||
items: [
|
||||
// {
|
||||
// label: 'Blog',
|
||||
// to: '/blog',
|
||||
// },
|
||||
{
|
||||
label: 'Website',
|
||||
href: 'https://www.niklas-birk.de',
|
||||
@ -143,6 +143,15 @@ const config = {
|
||||
},
|
||||
],
|
||||
},
|
||||
{
|
||||
title: 'Legal',
|
||||
items: [
|
||||
{
|
||||
label: 'Impressum',
|
||||
href: 'https://www.niklas-birk.de/impressum.html',
|
||||
},
|
||||
],
|
||||
},
|
||||
],
|
||||
copyright: `Copyright © ${new Date().getFullYear()} Niklas Birk. Built with Docusaurus.`,
|
||||
},
|
||||
@ -162,5 +171,3 @@ const config = {
|
||||
},
|
||||
],
|
||||
};
|
||||
|
||||
module.exports = config;
|
||||
|
19871
package-lock.json
generated
19871
package-lock.json
generated
File diff suppressed because it is too large
Load Diff
27
package.json
27
package.json
@ -1,6 +1,6 @@
|
||||
{
|
||||
"name": "niklas-birk-blog",
|
||||
"version": "0.0.0",
|
||||
"version": "0.1.1",
|
||||
"private": true,
|
||||
"scripts": {
|
||||
"docusaurus": "docusaurus",
|
||||
@ -14,19 +14,20 @@
|
||||
"write-heading-ids": "docusaurus write-heading-ids"
|
||||
},
|
||||
"dependencies": {
|
||||
"@docusaurus/core": "^2.2.0",
|
||||
"@docusaurus/preset-classic": "^2.2.0",
|
||||
"@mdx-js/react": "^1.6.22",
|
||||
"clsx": "^1.2.1",
|
||||
"hast-util-is-element": "^1.1.0",
|
||||
"prism-react-renderer": "^1.3.5",
|
||||
"react": "^17.0.2",
|
||||
"react-dom": "^17.0.2",
|
||||
"rehype-katex": "^5.0.0",
|
||||
"remark-math": "^3.0.1"
|
||||
"@docusaurus/core": "^3.4.0",
|
||||
"@docusaurus/preset-classic": "^3.4.0",
|
||||
"@mdx-js/react": "^3.0.1",
|
||||
"clsx": "^2.1.1",
|
||||
"hast-util-is-element": "^3.0.0",
|
||||
"prism-react-renderer": "^2.3.1",
|
||||
"react": "^18.3.1",
|
||||
"react-dom": "^18.3.1",
|
||||
"rehype-katex": "^7.0.0",
|
||||
"remark-math": "^6.0.0"
|
||||
},
|
||||
"devDependencies": {
|
||||
"@docusaurus/module-type-aliases": "^2.1.0"
|
||||
"@docusaurus/module-type-aliases": "^3.4.0",
|
||||
"@docusaurus/types": "3.4.0"
|
||||
},
|
||||
"browserslist": {
|
||||
"production": [
|
||||
@ -41,6 +42,6 @@
|
||||
]
|
||||
},
|
||||
"engines": {
|
||||
"node": ">=16.14"
|
||||
"node": ">=18.0"
|
||||
}
|
||||
}
|
||||
|
@ -24,9 +24,9 @@ const FeatureList = [
|
||||
Verarbeitung befasst.</p>
|
||||
<p>
|
||||
<q><cite>In der Informatik geht es genau so wenig um Computer, wie in der Astronomie um
|
||||
Teleskope.</cite></q>
|
||||
</p>
|
||||
Teleskope.</cite></q><br />
|
||||
- Edsger Wybe Dijkstra
|
||||
</p>
|
||||
</>
|
||||
),
|
||||
},
|
||||
|
Binary file not shown.
Before Width: | Height: | Size: 17 KiB After Width: | Height: | Size: 17 KiB |
@ -1,19 +1,26 @@
|
||||
<?xml version="1.0" encoding="UTF-8"?>
|
||||
<!DOCTYPE svg PUBLIC "-//W3C//DTD SVG 1.1//EN" "http://www.w3.org/Graphics/SVG/1.1/DTD/svg11.dtd">
|
||||
<svg version="1.2" width="100mm" height="100mm" viewBox="0 0 10000 10000"
|
||||
preserveAspectRatio="xMidYMid" fill-rule="evenodd" stroke-width="28.222" stroke-linejoin="round"
|
||||
xmlns="http://www.w3.org/2000/svg"
|
||||
xml:space="preserve">
|
||||
<svg version="1.2" width="200mm" height="200mm" viewBox="0 0 20000 20000" preserveAspectRatio="xMidYMid" fill-rule="evenodd" stroke-width="28.222" stroke-linejoin="round" xmlns="http://www.w3.org/2000/svg" xmlns:ooo="http://xml.openoffice.org/svg/export" xmlns:xlink="http://www.w3.org/1999/xlink" xmlns:presentation="http://sun.com/xmlns/staroffice/presentation" xmlns:smil="http://www.w3.org/2001/SMIL20/" xmlns:anim="urn:oasis:names:tc:opendocument:xmlns:animation:1.0" xmlns:svg="urn:oasis:names:tc:opendocument:xmlns:svg-compatible:1.0" xml:space="preserve">
|
||||
<defs class="ClipPathGroup">
|
||||
<clipPath id="presentation_clip_path">
|
||||
<rect x="0" y="0" width="10000" height="10000"/>
|
||||
<clipPath id="presentation_clip_path" clipPathUnits="userSpaceOnUse">
|
||||
<rect x="0" y="0" width="20000" height="20000"/>
|
||||
</clipPath>
|
||||
<clipPath id="presentation_clip_path_shrink">
|
||||
<rect x="10" y="10" width="9980" height="9980"/>
|
||||
<clipPath id="presentation_clip_path_shrink" clipPathUnits="userSpaceOnUse">
|
||||
<rect x="20" y="20" width="19960" height="19960"/>
|
||||
</clipPath>
|
||||
</defs>
|
||||
<defs>
|
||||
<font id="EmbeddedFont_1" horiz-adv-x="2048">
|
||||
<font-face font-family="Liberation Serif embedded" units-per-em="2048" font-weight="normal" font-style="normal" ascent="1826" descent="450"/>
|
||||
<missing-glyph horiz-adv-x="2048" d="M 0,0 L 2047,0 2047,2047 0,2047 0,0 Z"/>
|
||||
<glyph unicode="ﬡ" horiz-adv-x="1086" d="M 1155,1007 C 1155,978 1146,952 1128,930 1103,955 1081,967 1061,967 1040,967 1013,953 981,924 886,841 809,731 748,592 L 1059,244 C 1101,198 1122,157 1122,121 1122,98 1118,76 1109,54 1100,32 1089,13 1075,-3 1061,-19 1050,-27 1042,-27 1037,-27 1033,-24 1032,-19 1017,27 976,82 911,147 L 391,727 C 342,694 307,660 286,626 265,591 254,552 254,508 254,478 261,447 275,414 289,381 311,343 342,300 372,258 394,221 409,188 423,155 430,123 430,92 430,56 423,25 410,0 L 96,0 96,63 203,63 C 233,63 248,79 248,111 248,128 242,147 230,170 217,193 204,219 189,248 174,277 160,310 148,346 135,382 129,422 129,465 129,511 144,559 174,608 203,657 244,700 295,737 L 348,772 209,928 C 168,977 147,1024 147,1071 147,1093 151,1115 160,1136 169,1157 179,1175 192,1190 205,1205 214,1212 221,1212 228,1212 233,1205 238,1192 248,1161 301,1091 397,981 L 666,684 C 739,791 831,885 942,967 903,967 871,977 848,997 825,1016 813,1043 813,1077 813,1106 822,1135 840,1163 858,1190 875,1204 891,1204 895,1204 897,1202 898,1199 899,1195 899,1187 899,1176 899,1160 902,1148 909,1141 916,1134 929,1131 948,1131 L 1040,1131 C 1076,1131 1104,1120 1125,1098 1145,1076 1155,1046 1155,1007 Z"/>
|
||||
<glyph unicode="∞" horiz-adv-x="1324" d="M 1382,590 C 1382,480 1352,388 1293,314 1233,240 1158,203 1067,203 927,203 810,291 716,467 673,382 625,318 570,275 515,231 457,209 395,209 300,209 224,244 165,315 106,386 77,479 77,596 77,709 107,801 166,874 225,947 302,983 395,983 465,983 530,962 589,919 648,876 700,812 743,725 786,808 833,871 886,914 938,956 999,977 1069,977 1164,977 1240,941 1297,870 1354,798 1382,705 1382,590 Z M 1088,872 C 1035,872 986,849 942,802 897,755 854,685 811,590 851,496 893,425 938,378 982,331 1033,307 1090,307 1154,307 1206,334 1247,387 1287,440 1307,509 1307,592 1307,672 1287,739 1246,792 1205,845 1153,872 1088,872 Z M 645,596 C 607,689 566,760 522,808 477,855 425,879 365,879 303,879 252,852 213,799 173,745 153,677 153,594 153,510 173,442 212,391 251,339 303,313 369,313 423,313 472,337 517,384 562,431 604,501 645,596 Z"/>
|
||||
<glyph unicode="∂" horiz-adv-x="874" d="M 928,938 C 928,825 916,705 892,579 868,453 832,344 785,253 737,161 680,91 613,44 546,-3 471,-27 388,-27 287,-27 208,4 152,67 96,129 68,217 68,332 68,435 91,537 138,638 185,739 245,814 318,865 391,915 473,940 564,940 626,940 681,924 729,891 776,858 811,813 834,758 L 838,758 842,874 C 842,1025 817,1141 768,1222 718,1303 646,1343 551,1343 480,1343 404,1315 323,1259 L 287,1292 392,1442 C 445,1465 497,1477 549,1477 671,1477 765,1431 830,1339 895,1246 928,1113 928,938 Z M 813,643 C 801,704 775,755 735,796 694,836 648,856 596,856 535,856 480,833 430,787 380,741 339,672 307,581 274,490 258,398 258,305 258,222 275,158 310,112 345,66 392,43 451,43 505,43 557,67 606,114 655,161 698,231 735,325 772,419 798,525 813,643 Z"/>
|
||||
<glyph unicode="Σ" horiz-adv-x="1007" d="M 678,748 L 678,697 275,170 536,170 C 605,170 689,172 787,175 884,178 944,181 966,186 L 1023,374 1089,374 1070,0 80,0 80,74 518,646 88,1262 88,1341 1009,1341 1009,1020 943,1020 901,1237 C 826,1246 724,1251 595,1251 L 329,1251 678,748 Z"/>
|
||||
</font>
|
||||
</defs>
|
||||
<defs class="TextShapeIndex">
|
||||
<!-- <g ooo:slide="id1" ooo:id-list="id3"/>-->
|
||||
<g ooo:slide="id1" ooo:id-list="id3 id4 id5 id6 id7 id8 id9 id10 id11"/>
|
||||
</defs>
|
||||
<defs class="EmbeddedBulletChars">
|
||||
<g id="bullet-char-template-57356" transform="scale(0.00048828125,-0.00048828125)">
|
||||
@ -58,35 +65,63 @@
|
||||
<g id="container-id1">
|
||||
<g id="id1" class="Slide" clip-path="url(#presentation_clip_path)">
|
||||
<g class="Page">
|
||||
<g class="Graphic">
|
||||
<g class="com.sun.star.drawing.CustomShape">
|
||||
<g id="id3">
|
||||
<rect class="BoundingBox" stroke="none" fill="none" x="0" y="1" width="10001" height="10001"/>
|
||||
<defs>
|
||||
<clipPath id="clip_path_1">
|
||||
<path d="M 0,1 L 10000,1 10000,10001 0,10001 0,1 Z"/>
|
||||
</clipPath>
|
||||
</defs>
|
||||
<g clip-path="url(#clip_path_1)"/>
|
||||
<defs>
|
||||
<clipPath id="clip_path_2">
|
||||
<path d="M 0,1 L 10000,1 10000,10001 0,10001 0,1 Z"/>
|
||||
</clipPath>
|
||||
</defs>
|
||||
<g clip-path="url(#clip_path_2)">
|
||||
<path fill="rgb(76,103,13)" stroke="none"
|
||||
d="M 5008,14323 L -4206,14323 -4206,-4302 14222,-4302 14222,14323 5008,14323 Z"/>
|
||||
<path fill="rgb(255,255,2)" stroke="none"
|
||||
d="M 8556,4978 C 8556,5618 8387,6246 8067,6801 7747,7355 7287,7815 6733,8135 6178,8455 5549,8624 4909,8624 4269,8624 3641,8455 3086,8135 2532,7815 2072,7355 1752,6801 1432,6246 1263,5618 1263,4978 1263,4337 1432,3709 1752,3154 2072,2600 2532,2140 3086,1820 3641,1500 4269,1331 4909,1331 5549,1331 6178,1500 6733,1820 7287,2140 7747,2600 8067,3154 8387,3709 8556,4337 8556,4978 L 8556,4978 Z"/>
|
||||
<path fill="rgb(26,23,27)" stroke="none"
|
||||
d="M 6305,5010 C 6305,5483 6241,5948 6118,6357 5996,6767 5820,7107 5607,7344 5395,7580 5154,7705 4909,7705 4664,7705 4424,7580 4211,7344 3999,7107 3823,6767 3700,6357 3578,5948 3513,5483 3513,5010 3513,4537 3578,4073 3700,3663 3823,3254 3999,2914 4211,2677 4424,2441 4664,2316 4909,2316 5154,2316 5395,2441 5607,2677 5820,2914 5996,3254 6118,3663 6241,4073 6305,4537 6305,5010 L 6305,5010 Z"/>
|
||||
<path fill="rgb(152,19,5)" stroke="none"
|
||||
d="M 5287,5010 C 5287,5152 5270,5290 5237,5413 5203,5535 5156,5637 5098,5707 5041,5778 4976,5815 4909,5815 4843,5815 4778,5778 4720,5707 4663,5637 4615,5535 4582,5413 4549,5290 4532,5152 4532,5010 4532,4869 4549,4730 4582,4608 4615,4486 4663,4384 4720,4313 4778,4243 4843,4206 4909,4206 4976,4206 5041,4243 5098,4313 5156,4384 5203,4486 5237,4608 5270,4730 5287,4869 5287,5010 L 5287,5010 Z"/>
|
||||
<path fill="rgb(76,103,13)" stroke="none"
|
||||
d="M 3846,1085 L 5972,1085 5972,1085 C 6429,1085 6877,1205 7272,1433 7667,1661 7996,1990 8224,2385 8452,2780 8572,3228 8572,3685 L 8572,3685 8572,3779 1247,3779 1247,3685 1247,3685 C 1247,3228 1367,2780 1595,2385 1823,1990 2151,1661 2546,1433 2942,1205 3390,1085 3846,1085 L 3846,1085 Z"/>
|
||||
<path fill="rgb(111,103,28)" stroke="none"
|
||||
d="M 8621,3828 L 1197,3828 1197,3738 C 1197,2248 2410,1036 3900,1036 L 5919,1036 C 7409,1036 8621,2248 8621,3738 L 8621,3828 Z M 1296,3729 L 8523,3729 C 8518,2298 7352,1134 5919,1134 L 3900,1134 C 2467,1134 1301,2298 1296,3729 L 1296,3729 Z"/>
|
||||
<rect class="BoundingBox" stroke="none" fill="none" x="-1" y="-1" width="20004" height="20004"/>
|
||||
<path fill="rgb(40,42,54)" stroke="none" d="M 10000,0 L 10000,0 C 8245,0 6521,462 5000,1340 3480,2218 2218,3480 1340,5000 462,6521 0,8245 0,10001 L 0,10000 0,10001 C 0,11756 462,13480 1340,15001 2218,16521 3480,17783 5000,18661 6521,19539 8245,20001 10001,20001 L 10000,20001 10001,20001 C 11756,20001 13480,19539 15001,18661 16521,17783 17783,16521 18661,15001 19539,13480 20001,11756 20001,10001 L 20001,10000 20001,10001 20001,10000 C 20001,8245 19539,6521 18661,5000 17783,3480 16521,2218 15001,1340 13480,462 11756,0 10000,0 L 10000,0 Z"/>
|
||||
<path fill="none" stroke="rgb(40,42,54)" d="M 10000,0 L 10000,0 C 8245,0 6521,462 5000,1340 3480,2218 2218,3480 1340,5000 462,6521 0,8245 0,10001 L 0,10000 0,10001 C 0,11756 462,13480 1340,15001 2218,16521 3480,17783 5000,18661 6521,19539 8245,20001 10001,20001 L 10000,20001 10001,20001 C 11756,20001 13480,19539 15001,18661 16521,17783 17783,16521 18661,15001 19539,13480 20001,11756 20001,10001 L 20001,10000 20001,10001 20001,10000 C 20001,8245 19539,6521 18661,5000 17783,3480 16521,2218 15001,1340 13480,462 11756,0 10000,0 L 10000,0 Z"/>
|
||||
</g>
|
||||
<g clip-path="url(#clip_path_1)"/>
|
||||
</g>
|
||||
<g class="com.sun.star.drawing.CustomShape">
|
||||
<g id="id4">
|
||||
<rect class="BoundingBox" stroke="none" fill="none" x="6389" y="2389" width="7223" height="7223"/>
|
||||
<path fill="rgb(189,147,249)" stroke="none" d="M 6665,5334 L 6666,5333 C 6549,5450 6465,5596 6422,5756 6379,5916 6379,6084 6422,6244 6465,6404 6549,6550 6666,6667 L 9333,9334 9333,9334 C 9450,9451 9596,9535 9756,9578 9916,9621 10084,9621 10244,9578 10404,9535 10550,9451 10667,9334 L 13334,6667 13334,6667 C 13451,6550 13535,6404 13578,6244 13621,6084 13621,5916 13578,5756 13535,5596 13451,5450 13334,5333 L 10666,2665 10667,2666 10667,2666 C 10550,2549 10404,2465 10244,2422 10084,2379 9916,2379 9756,2422 9596,2465 9450,2549 9333,2666 L 6665,5334 Z"/>
|
||||
<path fill="none" stroke="rgb(189,147,249)" d="M 6665,5334 L 6666,5333 C 6549,5450 6465,5596 6422,5756 6379,5916 6379,6084 6422,6244 6465,6404 6549,6550 6666,6667 L 9333,9334 9333,9334 C 9450,9451 9596,9535 9756,9578 9916,9621 10084,9621 10244,9578 10404,9535 10550,9451 10667,9334 L 13334,6667 13334,6667 C 13451,6550 13535,6404 13578,6244 13621,6084 13621,5916 13578,5756 13535,5596 13451,5450 13334,5333 L 10666,2665 10667,2666 10667,2666 C 10550,2549 10404,2465 10244,2422 10084,2379 9916,2379 9756,2422 9596,2465 9450,2549 9333,2666 L 6665,5334 Z"/>
|
||||
</g>
|
||||
</g>
|
||||
<g class="com.sun.star.drawing.CustomShape">
|
||||
<g id="id5">
|
||||
<rect class="BoundingBox" stroke="none" fill="none" x="6389" y="10389" width="7223" height="7223"/>
|
||||
<path fill="rgb(255,121,198)" stroke="none" d="M 6665,13334 L 6666,13333 C 6549,13450 6465,13596 6422,13756 6379,13916 6379,14084 6422,14244 6465,14404 6549,14550 6666,14667 L 9333,17334 9333,17334 C 9450,17451 9596,17535 9756,17578 9916,17621 10084,17621 10244,17578 10404,17535 10550,17451 10667,17334 L 13334,14667 13334,14667 C 13451,14550 13535,14404 13578,14244 13621,14084 13621,13916 13578,13756 13535,13596 13451,13450 13334,13333 L 10666,10665 10667,10666 10667,10666 C 10550,10549 10404,10465 10244,10422 10084,10379 9916,10379 9756,10422 9596,10465 9450,10549 9333,10666 L 6665,13334 Z"/>
|
||||
<path fill="none" stroke="rgb(255,121,198)" d="M 6665,13334 L 6666,13333 C 6549,13450 6465,13596 6422,13756 6379,13916 6379,14084 6422,14244 6465,14404 6549,14550 6666,14667 L 9333,17334 9333,17334 C 9450,17451 9596,17535 9756,17578 9916,17621 10084,17621 10244,17578 10404,17535 10550,17451 10667,17334 L 13334,14667 13334,14667 C 13451,14550 13535,14404 13578,14244 13621,14084 13621,13916 13578,13756 13535,13596 13451,13450 13334,13333 L 10666,10665 10667,10666 10667,10666 C 10550,10549 10404,10465 10244,10422 10084,10379 9916,10379 9756,10422 9596,10465 9450,10549 9333,10666 L 6665,13334 Z"/>
|
||||
</g>
|
||||
</g>
|
||||
<g class="com.sun.star.drawing.CustomShape">
|
||||
<g id="id6">
|
||||
<rect class="BoundingBox" stroke="none" fill="none" x="10389" y="6389" width="7223" height="7223"/>
|
||||
<path fill="rgb(255,184,108)" stroke="none" d="M 10665,9334 L 10666,9333 C 10549,9450 10465,9596 10422,9756 10379,9916 10379,10084 10422,10244 10465,10404 10549,10550 10666,10667 L 13333,13334 13333,13334 C 13450,13451 13596,13535 13756,13578 13916,13621 14084,13621 14244,13578 14404,13535 14550,13451 14667,13334 L 17334,10667 17334,10667 C 17451,10550 17535,10404 17578,10244 17621,10084 17621,9916 17578,9756 17535,9596 17451,9450 17334,9333 L 14666,6665 14667,6666 14667,6666 C 14550,6549 14404,6465 14244,6422 14084,6379 13916,6379 13756,6422 13596,6465 13450,6549 13333,6666 L 10665,9334 Z"/>
|
||||
<path fill="none" stroke="rgb(255,184,108)" d="M 10665,9334 L 10666,9333 C 10549,9450 10465,9596 10422,9756 10379,9916 10379,10084 10422,10244 10465,10404 10549,10550 10666,10667 L 13333,13334 13333,13334 C 13450,13451 13596,13535 13756,13578 13916,13621 14084,13621 14244,13578 14404,13535 14550,13451 14667,13334 L 17334,10667 17334,10667 C 17451,10550 17535,10404 17578,10244 17621,10084 17621,9916 17578,9756 17535,9596 17451,9450 17334,9333 L 14666,6665 14667,6666 14667,6666 C 14550,6549 14404,6465 14244,6422 14084,6379 13916,6379 13756,6422 13596,6465 13450,6549 13333,6666 L 10665,9334 Z"/>
|
||||
</g>
|
||||
</g>
|
||||
<g class="com.sun.star.drawing.CustomShape">
|
||||
<g id="id7">
|
||||
<rect class="BoundingBox" stroke="none" fill="none" x="2389" y="6389" width="7223" height="7223"/>
|
||||
<path fill="rgb(255,85,85)" stroke="none" d="M 2665,9334 L 2666,9333 C 2549,9450 2465,9596 2422,9756 2379,9916 2379,10084 2422,10244 2465,10404 2549,10550 2666,10667 L 5333,13334 5333,13334 C 5450,13451 5596,13535 5756,13578 5916,13621 6084,13621 6244,13578 6404,13535 6550,13451 6667,13334 L 9334,10667 9334,10667 C 9451,10550 9535,10404 9578,10244 9621,10084 9621,9916 9578,9756 9535,9596 9451,9450 9334,9333 L 6666,6665 6667,6666 6667,6666 C 6550,6549 6404,6465 6244,6422 6084,6379 5916,6379 5756,6422 5596,6465 5450,6549 5333,6666 L 2665,9334 Z"/>
|
||||
<path fill="none" stroke="rgb(255,85,85)" d="M 2665,9334 L 2666,9333 C 2549,9450 2465,9596 2422,9756 2379,9916 2379,10084 2422,10244 2465,10404 2549,10550 2666,10667 L 5333,13334 5333,13334 C 5450,13451 5596,13535 5756,13578 5916,13621 6084,13621 6244,13578 6404,13535 6550,13451 6667,13334 L 9334,10667 9334,10667 C 9451,10550 9535,10404 9578,10244 9621,10084 9621,9916 9578,9756 9535,9596 9451,9450 9334,9333 L 6666,6665 6667,6666 6667,6666 C 6550,6549 6404,6465 6244,6422 6084,6379 5916,6379 5756,6422 5596,6465 5450,6549 5333,6666 L 2665,9334 Z"/>
|
||||
</g>
|
||||
</g>
|
||||
<g class="TextShape">
|
||||
<g id="id8">
|
||||
<rect class="BoundingBox" stroke="none" fill="none" x="10500" y="6500" width="7001" height="7001"/>
|
||||
<text class="SVGTextShape"><tspan class="TextParagraph"><tspan class="TextPosition" x="12413" y="11841"><tspan font-family="Liberation Serif, serif" font-size="5457px" font-weight="400" fill="rgb(78,40,0)" stroke="none" style="white-space: pre">Σ</tspan></tspan></tspan></text>
|
||||
</g>
|
||||
</g>
|
||||
<g class="TextShape">
|
||||
<g id="id9">
|
||||
<rect class="BoundingBox" stroke="none" fill="none" x="2500" y="6500" width="7001" height="7001"/>
|
||||
<text class="SVGTextShape"><tspan class="TextParagraph"><tspan class="TextPosition" x="4654" y="11841"><tspan font-family="Liberation Serif, serif" font-size="5457px" font-weight="400" fill="rgb(79,0,0)" stroke="none" style="white-space: pre">∂</tspan></tspan></tspan></text>
|
||||
</g>
|
||||
</g>
|
||||
<g class="TextShape">
|
||||
<g id="id10">
|
||||
<rect class="BoundingBox" stroke="none" fill="none" x="6500" y="2300" width="7001" height="6901"/>
|
||||
<text class="SVGTextShape"><tspan class="TextParagraph"><tspan class="TextPosition" x="8057" y="7591"><tspan font-family="Liberation Serif, serif" font-size="5457px" font-weight="400" fill="rgb(32,3,74)" stroke="none" style="white-space: pre">∞</tspan></tspan></tspan></text>
|
||||
</g>
|
||||
</g>
|
||||
<g class="TextShape">
|
||||
<g id="id11">
|
||||
<rect class="BoundingBox" stroke="none" fill="none" x="6600" y="10300" width="7001" height="7001"/>
|
||||
<text class="SVGTextShape"><tspan class="TextParagraph"><tspan class="TextPosition" x="8644" y="15440"><tspan font-family="Liberation Serif, serif" font-size="4861px" font-weight="400" fill="rgb(79,0,0)" stroke="none" style="white-space: pre">ﬡ</tspan></tspan></tspan></text>
|
||||
</g>
|
||||
</g>
|
||||
</g>
|
||||
|
Before Width: | Height: | Size: 6.7 KiB After Width: | Height: | Size: 16 KiB |
Loading…
x
Reference in New Issue
Block a user