1
0

Finalize matrix.py

This commit is contained in:
Niklas Birk 2024-01-13 12:55:34 +01:00
parent b9c03b5d5f
commit 0450811b0c
2 changed files with 195 additions and 18 deletions

View File

@ -1,4 +1,5 @@
import numpy import numpy
from numpy import linalg
class Matrix: class Matrix:
@ -47,7 +48,8 @@ class Matrix:
elif structure == "tridiagonal": elif structure == "tridiagonal":
if len(data) != 3: if len(data) != 3:
raise ValueError("If structure is tridiagonal, then the given data must be of length 3") raise ValueError("If structure is tridiagonal, then the given data must be of length 3")
tridiag = numpy.diag([data[0]] * (n-1), -1) + numpy.diag([data[1]] * n, 0) + numpy.diag([data[2]] * (n-1), 1) tridiag = numpy.diag([data[0]] * (n - 1), -1) + numpy.diag([data[1]] * n, 0) + numpy.diag(
[data[2]] * (n - 1), 1)
self.__data__ = tridiag self.__data__ = tridiag
self.__shape__ = tridiag.shape self.__shape__ = tridiag.shape
# Case: Matrix(list, str, int) # Case: Matrix(list, str, int)
@ -64,7 +66,8 @@ class Matrix:
self.__shape__ = data.shape self.__shape__ = data.shape
self.__data__ = data self.__data__ = data
else: else:
raise ValueError("Only following signatures are allowed: (numpy.ndarray), (list, tuple), (list, str, int), (str, int)") raise ValueError(
"Only following signatures are allowed: (numpy.ndarray), (list, tuple), (list, str, int), (str, int)")
def get_data(self): def get_data(self):
""" """
@ -126,16 +129,47 @@ class Matrix:
def __rsub__(self, other): def __rsub__(self, other):
return -self + other return -self + other
def __mul__(self, other):
if isinstance(other, Matrix):
if self.__shape__[1] != other.__shape__[0]:
raise ValueError(
"The amount of columns of the first operand must match the amount of rows of the second operand")
return Matrix(self.__data__ @ other.__data__)
elif isinstance(other, int) or isinstance(other, float):
return Matrix(other * self.__data__)
else:
raise ValueError("Only a number or another ``Matrix`` can be multiplied to a ``Matrix``")
def __rmul__(self, other):
return self * other
def __truediv__(self, other): def __truediv__(self, other):
if isinstance(other, int) or isinstance(other, float): if isinstance(other, int) or isinstance(other, float):
return self.__data__ / other return self.__data__ / other
else: else:
raise ValueError("A ``Matrix`` can only be divided ba a number") raise ValueError("A ``Matrix`` can only be divided ba a number")
def __mul__(self, other): def norm(self, f: str = "frobenius"):
if isinstance(other, Matrix): """
if self.__shape__[1] != other.__shape__[0]: Calculates the norm of the matrix.
raise ValueError("The amount of columns of the first operand must match the amount of rows of the second operand")
return Matrix(self.__data__ * other.__data__) A norm is a positive definit, absolute homogeneous and subadditive function.
elif isinstance(other, int) or isinstance(other, float): For Matrices a norm is also sub-multiplicative.
...
:param f: The norm to be used, could be either "frobenius", "rowsum" or "colsum"
:return: the norm as a number
"""
t = "fro"
if f == "colsum":
t = 1
elif f == "rowsum":
t = numpy.inf
return linalg.norm(self.__data__, t)
def __getitem__(self, key):
return self.__data__[key]
def __setitem__(self, key, value):
self.__data__[key] = value

View File

@ -180,15 +180,6 @@ class TestMatrix(TestCase):
self.assertEqual(expected, actual) self.assertEqual(expected, actual)
def test_should_div_matrix_by_scalar(self):
m = Matrix([5, 10, 15, 20], (2, 2))
s = 5
actual = m / s
expected = Matrix([1, 2, 3, 4], (2, 2))
self.assertEqual(expected, actual)
def test_should_raise_value_missmatch_error_while_dividing_with_other_than_scalar(self): def test_should_raise_value_missmatch_error_while_dividing_with_other_than_scalar(self):
m = Matrix([1, 2, 3, 4], (2, 2)) m = Matrix([1, 2, 3, 4], (2, 2))
o = "" o = ""
@ -218,3 +209,155 @@ class TestMatrix(TestCase):
m2 = Matrix([3, 4], (2, 1)) m2 = Matrix([3, 4], (2, 1))
self.assertRaises(ValueError, lambda: m1 * m2) self.assertRaises(ValueError, lambda: m1 * m2)
def test_should_mul_scalar_to_matrix(self):
m = Matrix([1, 2, 3, 4], (2, 2))
s = 5
actual = m * s
expected = Matrix([5, 10, 15, 20], (2, 2))
self.assertEqual(expected, actual)
def test_should_rmul_scalar_to_matrix(self):
m = Matrix([1, 2, 3, 4], (2, 2))
s = 5
actual = s * m
expected = Matrix([5, 10, 15, 20], (2, 2))
self.assertEqual(expected, actual)
def test_should_div_matrix_by_scalar(self):
m = Matrix([5, 10, 15, 20], (2, 2))
s = 5
actual = m / s
expected = Matrix([1, 2, 3, 4], (2, 2))
self.assertEqual(expected, actual)
def test_should_return_frobenius_norm(self):
m = Matrix([1, 2, 3, 4], (2, 2))
actual = m.norm()
expected = 5.477
self.assertAlmostEqual(expected, actual, 3)
def test_should_return_colsum_norm(self):
m = Matrix([1, 2, 3, 4], (2, 2))
actual = m.norm("colsum")
expected = 6
self.assertEqual(expected, actual)
def test_should_return_rowsum_norm(self):
m = Matrix([1, 2, 3, 4], (2, 2))
actual = m.norm("rowsum")
expected = 7
self.assertEqual(expected, actual)
def test_should_return_first_element(self):
m = Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9], (3, 3))
actual = m[0, 0]
expected = 1
self.assertEqual(expected, actual)
def test_should_return_last_element(self):
m = Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9], (3, 3))
actual = m[2, 2]
expected = 9
self.assertEqual(expected, actual)
def test_should_return_first_row(self):
m = Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9], (3, 3))
actual = m[0]
expected = Matrix([1, 2, 3], (1, 3))
self.assertEqual(expected, actual)
def test_should_return_last_row_except_last_element(self):
m = Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9], (3, 3))
actual = m[2, 0:2]
expected = Matrix([7, 8], (1, 2))
self.assertEqual(expected, actual)
def test_should_return_mid_column(self):
m = Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9], (3, 3))
actual = m[:, 1]
expected = Matrix([2, 5, 8], (1, 3))
self.assertEqual(expected, actual)
def test_should_return_first_column_except_middle_element(self):
m = Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9], (3, 3))
actual = m[[0, 2], 0]
expected = Matrix([1, 7], (1, 2))
self.assertEqual(expected, actual)
def test_should_return_mid_submatrix(self):
m = Matrix(list(range(1, 17)), (4, 4))
actual = m[1:3, 1:3]
expected = Matrix([6, 7, 10, 11], (2, 2))
self.assertEqual(expected, actual)
def test_should_set_first_element(self):
m = Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9], (3, 3))
m[0, 0] = 10
actual = m
expected = Matrix([10, 2, 3, 4, 5, 6, 7, 8, 9], (3, 3))
self.assertEqual(expected, actual)
def test_should_set_mid_column(self):
m = Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9], (3, 3))
m[:, 1] = [20, 50, 80]
actual = m
expected = Matrix([1, 20, 3, 4, 50, 6, 7, 80, 9], (3, 3))
self.assertEqual(expected, actual)
def test_should_set_last_row(self):
m = Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9], (3, 3))
m[2] = [70, 80, 90]
actual = m
expected = Matrix([1, 2, 3, 4, 5, 6, 70, 80, 90], (3, 3))
self.assertEqual(expected, actual)
def test_should_set_first_row_except_mid_element(self):
m = Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9], (3, 3))
m[0, [0, 2]] = [10, 30]
actual = m
expected = Matrix([10, 2, 30, 4, 5, 6, 7, 8, 9], (3, 3))
self.assertEqual(expected, actual)
def test_should_set_mid_submatrix(self):
m = Matrix(list(range(1, 17)), (4, 4))
m[1:3, 1:3] = [[60, 70], [100, 110]]
actual = m
expected = Matrix([1, 2, 3, 4, 5, 60, 70, 8, 9, 100, 110, 12, 13, 14, 15, 16], (4, 4))
self.assertEqual(expected, actual)