Finalize matrix.py
This commit is contained in:
parent
b9c03b5d5f
commit
0450811b0c
@ -1,4 +1,5 @@
|
|||||||
import numpy
|
import numpy
|
||||||
|
from numpy import linalg
|
||||||
|
|
||||||
|
|
||||||
class Matrix:
|
class Matrix:
|
||||||
@ -47,7 +48,8 @@ class Matrix:
|
|||||||
elif structure == "tridiagonal":
|
elif structure == "tridiagonal":
|
||||||
if len(data) != 3:
|
if len(data) != 3:
|
||||||
raise ValueError("If structure is tridiagonal, then the given data must be of length 3")
|
raise ValueError("If structure is tridiagonal, then the given data must be of length 3")
|
||||||
tridiag = numpy.diag([data[0]] * (n-1), -1) + numpy.diag([data[1]] * n, 0) + numpy.diag([data[2]] * (n-1), 1)
|
tridiag = numpy.diag([data[0]] * (n - 1), -1) + numpy.diag([data[1]] * n, 0) + numpy.diag(
|
||||||
|
[data[2]] * (n - 1), 1)
|
||||||
self.__data__ = tridiag
|
self.__data__ = tridiag
|
||||||
self.__shape__ = tridiag.shape
|
self.__shape__ = tridiag.shape
|
||||||
# Case: Matrix(list, str, int)
|
# Case: Matrix(list, str, int)
|
||||||
@ -64,7 +66,8 @@ class Matrix:
|
|||||||
self.__shape__ = data.shape
|
self.__shape__ = data.shape
|
||||||
self.__data__ = data
|
self.__data__ = data
|
||||||
else:
|
else:
|
||||||
raise ValueError("Only following signatures are allowed: (numpy.ndarray), (list, tuple), (list, str, int), (str, int)")
|
raise ValueError(
|
||||||
|
"Only following signatures are allowed: (numpy.ndarray), (list, tuple), (list, str, int), (str, int)")
|
||||||
|
|
||||||
def get_data(self):
|
def get_data(self):
|
||||||
"""
|
"""
|
||||||
@ -126,16 +129,47 @@ class Matrix:
|
|||||||
def __rsub__(self, other):
|
def __rsub__(self, other):
|
||||||
return -self + other
|
return -self + other
|
||||||
|
|
||||||
|
def __mul__(self, other):
|
||||||
|
if isinstance(other, Matrix):
|
||||||
|
if self.__shape__[1] != other.__shape__[0]:
|
||||||
|
raise ValueError(
|
||||||
|
"The amount of columns of the first operand must match the amount of rows of the second operand")
|
||||||
|
return Matrix(self.__data__ @ other.__data__)
|
||||||
|
elif isinstance(other, int) or isinstance(other, float):
|
||||||
|
return Matrix(other * self.__data__)
|
||||||
|
else:
|
||||||
|
raise ValueError("Only a number or another ``Matrix`` can be multiplied to a ``Matrix``")
|
||||||
|
|
||||||
|
def __rmul__(self, other):
|
||||||
|
return self * other
|
||||||
|
|
||||||
def __truediv__(self, other):
|
def __truediv__(self, other):
|
||||||
if isinstance(other, int) or isinstance(other, float):
|
if isinstance(other, int) or isinstance(other, float):
|
||||||
return self.__data__ / other
|
return self.__data__ / other
|
||||||
else:
|
else:
|
||||||
raise ValueError("A ``Matrix`` can only be divided ba a number")
|
raise ValueError("A ``Matrix`` can only be divided ba a number")
|
||||||
|
|
||||||
def __mul__(self, other):
|
def norm(self, f: str = "frobenius"):
|
||||||
if isinstance(other, Matrix):
|
"""
|
||||||
if self.__shape__[1] != other.__shape__[0]:
|
Calculates the norm of the matrix.
|
||||||
raise ValueError("The amount of columns of the first operand must match the amount of rows of the second operand")
|
|
||||||
return Matrix(self.__data__ * other.__data__)
|
A norm is a positive definit, absolute homogeneous and subadditive function.
|
||||||
elif isinstance(other, int) or isinstance(other, float):
|
For Matrices a norm is also sub-multiplicative.
|
||||||
...
|
|
||||||
|
:param f: The norm to be used, could be either "frobenius", "rowsum" or "colsum"
|
||||||
|
|
||||||
|
:return: the norm as a number
|
||||||
|
"""
|
||||||
|
t = "fro"
|
||||||
|
if f == "colsum":
|
||||||
|
t = 1
|
||||||
|
elif f == "rowsum":
|
||||||
|
t = numpy.inf
|
||||||
|
return linalg.norm(self.__data__, t)
|
||||||
|
|
||||||
|
def __getitem__(self, key):
|
||||||
|
return self.__data__[key]
|
||||||
|
|
||||||
|
def __setitem__(self, key, value):
|
||||||
|
self.__data__[key] = value
|
||||||
|
|
||||||
|
@ -180,15 +180,6 @@ class TestMatrix(TestCase):
|
|||||||
|
|
||||||
self.assertEqual(expected, actual)
|
self.assertEqual(expected, actual)
|
||||||
|
|
||||||
def test_should_div_matrix_by_scalar(self):
|
|
||||||
m = Matrix([5, 10, 15, 20], (2, 2))
|
|
||||||
s = 5
|
|
||||||
|
|
||||||
actual = m / s
|
|
||||||
expected = Matrix([1, 2, 3, 4], (2, 2))
|
|
||||||
|
|
||||||
self.assertEqual(expected, actual)
|
|
||||||
|
|
||||||
def test_should_raise_value_missmatch_error_while_dividing_with_other_than_scalar(self):
|
def test_should_raise_value_missmatch_error_while_dividing_with_other_than_scalar(self):
|
||||||
m = Matrix([1, 2, 3, 4], (2, 2))
|
m = Matrix([1, 2, 3, 4], (2, 2))
|
||||||
o = ""
|
o = ""
|
||||||
@ -218,3 +209,155 @@ class TestMatrix(TestCase):
|
|||||||
m2 = Matrix([3, 4], (2, 1))
|
m2 = Matrix([3, 4], (2, 1))
|
||||||
|
|
||||||
self.assertRaises(ValueError, lambda: m1 * m2)
|
self.assertRaises(ValueError, lambda: m1 * m2)
|
||||||
|
|
||||||
|
def test_should_mul_scalar_to_matrix(self):
|
||||||
|
m = Matrix([1, 2, 3, 4], (2, 2))
|
||||||
|
s = 5
|
||||||
|
|
||||||
|
actual = m * s
|
||||||
|
expected = Matrix([5, 10, 15, 20], (2, 2))
|
||||||
|
|
||||||
|
self.assertEqual(expected, actual)
|
||||||
|
|
||||||
|
def test_should_rmul_scalar_to_matrix(self):
|
||||||
|
m = Matrix([1, 2, 3, 4], (2, 2))
|
||||||
|
s = 5
|
||||||
|
|
||||||
|
actual = s * m
|
||||||
|
expected = Matrix([5, 10, 15, 20], (2, 2))
|
||||||
|
|
||||||
|
self.assertEqual(expected, actual)
|
||||||
|
|
||||||
|
def test_should_div_matrix_by_scalar(self):
|
||||||
|
m = Matrix([5, 10, 15, 20], (2, 2))
|
||||||
|
s = 5
|
||||||
|
|
||||||
|
actual = m / s
|
||||||
|
expected = Matrix([1, 2, 3, 4], (2, 2))
|
||||||
|
|
||||||
|
self.assertEqual(expected, actual)
|
||||||
|
|
||||||
|
def test_should_return_frobenius_norm(self):
|
||||||
|
m = Matrix([1, 2, 3, 4], (2, 2))
|
||||||
|
|
||||||
|
actual = m.norm()
|
||||||
|
expected = 5.477
|
||||||
|
|
||||||
|
self.assertAlmostEqual(expected, actual, 3)
|
||||||
|
|
||||||
|
def test_should_return_colsum_norm(self):
|
||||||
|
m = Matrix([1, 2, 3, 4], (2, 2))
|
||||||
|
|
||||||
|
actual = m.norm("colsum")
|
||||||
|
expected = 6
|
||||||
|
|
||||||
|
self.assertEqual(expected, actual)
|
||||||
|
|
||||||
|
def test_should_return_rowsum_norm(self):
|
||||||
|
m = Matrix([1, 2, 3, 4], (2, 2))
|
||||||
|
|
||||||
|
actual = m.norm("rowsum")
|
||||||
|
expected = 7
|
||||||
|
|
||||||
|
self.assertEqual(expected, actual)
|
||||||
|
|
||||||
|
def test_should_return_first_element(self):
|
||||||
|
m = Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9], (3, 3))
|
||||||
|
|
||||||
|
actual = m[0, 0]
|
||||||
|
expected = 1
|
||||||
|
|
||||||
|
self.assertEqual(expected, actual)
|
||||||
|
|
||||||
|
def test_should_return_last_element(self):
|
||||||
|
m = Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9], (3, 3))
|
||||||
|
|
||||||
|
actual = m[2, 2]
|
||||||
|
expected = 9
|
||||||
|
|
||||||
|
self.assertEqual(expected, actual)
|
||||||
|
|
||||||
|
def test_should_return_first_row(self):
|
||||||
|
m = Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9], (3, 3))
|
||||||
|
|
||||||
|
actual = m[0]
|
||||||
|
expected = Matrix([1, 2, 3], (1, 3))
|
||||||
|
|
||||||
|
self.assertEqual(expected, actual)
|
||||||
|
|
||||||
|
def test_should_return_last_row_except_last_element(self):
|
||||||
|
m = Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9], (3, 3))
|
||||||
|
|
||||||
|
actual = m[2, 0:2]
|
||||||
|
expected = Matrix([7, 8], (1, 2))
|
||||||
|
|
||||||
|
self.assertEqual(expected, actual)
|
||||||
|
|
||||||
|
def test_should_return_mid_column(self):
|
||||||
|
m = Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9], (3, 3))
|
||||||
|
|
||||||
|
actual = m[:, 1]
|
||||||
|
expected = Matrix([2, 5, 8], (1, 3))
|
||||||
|
|
||||||
|
self.assertEqual(expected, actual)
|
||||||
|
|
||||||
|
def test_should_return_first_column_except_middle_element(self):
|
||||||
|
m = Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9], (3, 3))
|
||||||
|
|
||||||
|
actual = m[[0, 2], 0]
|
||||||
|
expected = Matrix([1, 7], (1, 2))
|
||||||
|
|
||||||
|
self.assertEqual(expected, actual)
|
||||||
|
|
||||||
|
def test_should_return_mid_submatrix(self):
|
||||||
|
m = Matrix(list(range(1, 17)), (4, 4))
|
||||||
|
|
||||||
|
actual = m[1:3, 1:3]
|
||||||
|
expected = Matrix([6, 7, 10, 11], (2, 2))
|
||||||
|
|
||||||
|
self.assertEqual(expected, actual)
|
||||||
|
|
||||||
|
def test_should_set_first_element(self):
|
||||||
|
m = Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9], (3, 3))
|
||||||
|
|
||||||
|
m[0, 0] = 10
|
||||||
|
actual = m
|
||||||
|
expected = Matrix([10, 2, 3, 4, 5, 6, 7, 8, 9], (3, 3))
|
||||||
|
|
||||||
|
self.assertEqual(expected, actual)
|
||||||
|
|
||||||
|
def test_should_set_mid_column(self):
|
||||||
|
m = Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9], (3, 3))
|
||||||
|
|
||||||
|
m[:, 1] = [20, 50, 80]
|
||||||
|
actual = m
|
||||||
|
expected = Matrix([1, 20, 3, 4, 50, 6, 7, 80, 9], (3, 3))
|
||||||
|
|
||||||
|
self.assertEqual(expected, actual)
|
||||||
|
|
||||||
|
def test_should_set_last_row(self):
|
||||||
|
m = Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9], (3, 3))
|
||||||
|
|
||||||
|
m[2] = [70, 80, 90]
|
||||||
|
actual = m
|
||||||
|
expected = Matrix([1, 2, 3, 4, 5, 6, 70, 80, 90], (3, 3))
|
||||||
|
|
||||||
|
self.assertEqual(expected, actual)
|
||||||
|
|
||||||
|
def test_should_set_first_row_except_mid_element(self):
|
||||||
|
m = Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9], (3, 3))
|
||||||
|
|
||||||
|
m[0, [0, 2]] = [10, 30]
|
||||||
|
actual = m
|
||||||
|
expected = Matrix([10, 2, 30, 4, 5, 6, 7, 8, 9], (3, 3))
|
||||||
|
|
||||||
|
self.assertEqual(expected, actual)
|
||||||
|
|
||||||
|
def test_should_set_mid_submatrix(self):
|
||||||
|
m = Matrix(list(range(1, 17)), (4, 4))
|
||||||
|
|
||||||
|
m[1:3, 1:3] = [[60, 70], [100, 110]]
|
||||||
|
actual = m
|
||||||
|
expected = Matrix([1, 2, 3, 4, 5, 60, 70, 8, 9, 100, 110, 12, 13, 14, 15, 16], (4, 4))
|
||||||
|
|
||||||
|
self.assertEqual(expected, actual)
|
||||||
|
Loading…
x
Reference in New Issue
Block a user