1
0

Finalize matrix_mpi.py; Add more vector_mpi.py

This commit is contained in:
2024-04-16 23:21:56 +02:00
parent 987de6acf7
commit 6848bc7b26
8 changed files with 291 additions and 502 deletions

View File

@ -1,6 +1,26 @@
# m1 = MatrixMPI(numpy.random.uniform(0, 1, 1_000_000), (1000, 1000))
from mpi4py import MPI
from matrix_mpi import MatrixMPI
from vector_mpi import VectorMPI
m1 = MatrixMPI([1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6], (5, 3))
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
print(m1 + m1)
m1 = MatrixMPI(list(range(1, 21)), (4, 5))
m2 = MatrixMPI(list(range(1, 16)), (5, 3))
m_mul = m1 * m2
v1 = VectorMPI(list(range(1, 21)))
v2 = VectorMPI(list(reversed(list(range(1, 21)))))
v_add = v1 + v2
v_mul = v1.T() * v2
if rank == 0:
print(m_mul)
print("---")
print(v_add)
print(v_mul)

View File

@ -210,10 +210,19 @@ class Matrix:
else:
raise ValueError("A ``Matrix`` can only be divided ba a number")
def __mul_rowmatrix_matrix__internal__(self, other):
cols = other.__shape__[1]
new_data = [0] * cols
for i in range(cols):
new_data[i] = sum([self.__data__[0][j] * other.__data__[j][i] for j in range(self.__shape__[1])])
return new_data
def __mul_matrix_internal__(self, other):
if self.__shape__[0] == 1:
return self.__mul_rowmatrix_matrix__internal__(other)
rows = self.__shape__[0]
cols = other.__shape__[1]
new_data = [([0] * rows) for _ in range(cols)]
new_data = [([0] * cols) for _ in range(rows)]
for i in range(rows):
for k in range(cols):
new_data[i][k] = sum([self.__data__[i][j] * other.__data__[j][k] for j in range(self.__shape__[1])])

View File

@ -5,21 +5,17 @@ from matrix import Matrix
class MatrixMPI:
__mpi_comm__ = None
__mpi_size__ = None
__mpi_rank__ = None
__mpi_comm__ = MPI.COMM_WORLD
__mpi_size__ = __mpi_comm__.Get_size()
__mpi_rank__ = __mpi_comm__.Get_rank()
__matrix__: Matrix = None
__data__: Matrix = None
__chunk__: list = None
def __init__(self, mpi_comm, data=None, shape=None, structure=None, model=None, offset=None, n=None):
self.__mpi_comm__ = mpi_comm
self.__mpi_size__ = self.__mpi_comm__.Get_size()
self.__mpi_rank__ = self.__mpi_comm__.Get_rank()
def __init__(self, data=None, shape=None, structure=None, model=None, offset=None, n=None):
self.__data__ = Matrix(data=data, shape=shape, structure=structure, model=model, offset=offset, n=n)
self.__matrix__ = Matrix(data=data, shape=shape, structure=structure, model=model, offset=offset, n=n)
total_amount_of_rows = self.__matrix__.shape()[0]
total_amount_of_rows = self.__data__.shape()[0]
chunks = numpy.array_split(list(range(total_amount_of_rows)), self.__mpi_size__)
self.__chunk__ = chunks[self.__mpi_rank__].tolist()
@ -28,18 +24,24 @@ class MatrixMPI:
return MatrixMPI(matrix.get_data(), matrix.shape())
def __str__(self):
return str(self.__matrix__)
return str(self.__data__)
def shape(self):
return self.__data__.shape()
def get_rank_submatrix(self):
rows = len(self.__chunk__)
cols = self.__matrix__.shape()[1]
return Matrix(self.__matrix__[self.__chunk__], (rows, cols))
cols = self.__data__.shape()[1]
return Matrix(self.__data__[self.__chunk__], (rows, cols))
def get_data(self):
return self.__data__
def transpose(self):
"""
:return: the transpose of the matrix
"""
return MatrixMPI.of(self.__matrix__.transpose())
return MatrixMPI.of(self.__data__.transpose())
def T(self):
"""
@ -57,9 +59,9 @@ class MatrixMPI:
:return: True if data in the matrix are equal to the given data in other for each component, otherwise False
"""
if isinstance(other, MatrixMPI):
return self.__matrix__ == other.__matrix__
return self.__data__ == other.__data__
else:
return self.__matrix__ == other
return self.__data__ == other
def __neg__(self):
gathered_data = self.__mpi_comm__.gather(-self.get_rank_submatrix())
@ -89,9 +91,10 @@ class MatrixMPI:
def __mul__(self, other):
if isinstance(other, MatrixMPI):
return self.__matrix__ * other.__matrix__
else:
return self.__matrix__ * other
other = other.get_data()
gathered_data = self.__mpi_comm__.gather(self.get_rank_submatrix() * other)
data = self.__mpi_comm__.bcast(gathered_data)
return MatrixMPI.of(Matrix.flatten(data))
def __rmul__(self, other):
return self * other
@ -107,11 +110,10 @@ class MatrixMPI:
:return: the norm as a number
"""
return self.__matrix__.norm(f)
return self.__data__.norm(f)
def __getitem__(self, key):
return self.__matrix__[key]
return self.__data__[key]
def __setitem__(self, key, value):
self.__matrix__[key] = value
self.__data__[key] = value

View File

@ -86,7 +86,7 @@ class Vector(Matrix):
return Vector(self.__mul_vector_same_shape_internal__(other))
elif self.__shape__ == tuple(reversed(other.__shape__)):
if self.__shape__[0] == 1: # Case (_ ... _) * (_\n...\n_) = scalar
return super().__mul_matrix_internal__(other)[0][0]
return super().__mul_matrix_internal__(other)[0]
else: # Case (_\n...\n_) * (_ ... _) = Matrix
new_data, shape = self.__mul_tensor_internal__(other)
return Matrix(new_data, shape)
@ -95,10 +95,19 @@ class Vector(Matrix):
elif isinstance(other, int) or isinstance(other, float):
return Vector(super().__mul_scalar_internal__(other))
else:
raise ValueError("A ``Vector`` can only be multiplied with an ``Vector`` (dot product or tensor),"
raise ValueError("A ``Vector`` can only be multiplied with an ``Vector`` (dot product or tensor), "
"a compatible ``Matrix`` or a scalar")
def __mul_matrix_vector_internal__(self, other):
rows = other.__shape__[0]
new_data = [0] * rows
for i in range(rows):
new_data[i] = sum([other.__data__[i][j] * self.__data__[j][0] for j in range(self.__shape__[0])])
return new_data
def __rmul__(self, other):
if isinstance(other, Matrix):
return Vector(self.__mul_matrix_vector_internal__(other))
return self * other
def __truediv_vector_internal__(self, other):

View File

@ -1,378 +1,88 @@
import numpy
from mpi4py import MPI
from matrix_mpi import MatrixMPI
from vector import Vector
class VectorMPI:
__mpi_comm__ = None
__mpi_size__ = None
__mpi_rank__ = None
class VectorMPI(MatrixMPI):
__data__: Vector = None
__vector__: Vector = None
def __init__(self, data=None, shape=None):
self.__data__ = Vector(data=data, shape=shape)
def __init__(self, mpi_comm, data=None, shape=None):
self.__mpi_comm__ = mpi_comm
self.__mpi_size__ = self.__mpi_comm__.Get_size()
self.__mpi_rank__ = self.__mpi_comm__.Get_rank()
@staticmethod
def of(vector: Vector):
return VectorMPI(vector.get_data(), vector.shape())
self.__vector__ = Vector(data=data, shape=shape)
def get_vector(self):
return self.__data__
# class Vector:
# start_idx = 0 # Nullter Eintrag des Vektors auf dem aktuellen Rang
# end_idx = 0 # Letzer Eintrag des Vektors auf dem aktuellen Rang
# rank_size = 0 # Dimension des Vektors der auf dem aktuellen Rang gespeichert wird
# kind = '' # Art des Vektors, Zeilen oder Spaltenvektor
# vec = np.arange(rank_size)
# vshape = np.arange(2) # Array mit Länge 2, um die Shape des Vektors zu speichern
# dim = 0 # Gesamtdimension des Vektors, Länge des Vektors
#
# comm = MPI.COMM_WORLD
# size = comm.Get_size()
# rank = comm.Get_rank()
#
# # Konstruktor
# def __init__(self, array):
#
# if isinstance(array, np.ndarray):
# form = array.shape
# if len(array) < self.size:
# raise ValueError("ERROR_3: Die Dimension des Vektors ist kleiner als die Anzahl der benutzten Ränge.")
#
# if len(form) > 2:
# raise ValueError("ERROR_2: Falsche Dimension, kann kein 1 x n oder n x 1 Vektor sein.")
# # Array ist Zeilenvektor:
# if len(form) == 1 or (len(form) == 2 and form[0] == 1):
# self.vshape[0] = 1
# self.vshape[1] = len(array) # Shape des Vectors
# self.start_idx = int(self.rank * len(array) / self.size)
# self.end_idx = int(len(array) / self.size + self.rank * len(array) / self.size) - 1
# self.rank_size = (
# self.end_idx - self.start_idx) + 1 # Größe des Teilvektors auf dem akt. Rang: Differenz zw. Start- und Endindex + 1
# self.vec = array[
# self.start_idx: self.end_idx + 1] # Auf jedem Rang werden die Einträge vom Start bis zum Endindex gespeichert
# self.kind = 'row'
# self.dim = len(array)
#
# # Array ist Spaltenvektor
# if len(form) == 2 and form[1] == 1:
# self.vshape[0] = len(array)
# self.vshape[1] = 1
# self.start_idx = int(self.rank * len(array) / self.size)
# self.end_idx = int(len(array) / self.size + self.rank * len(array) / self.size) - 1
# self.rank_size = (
# self.end_idx - self.start_idx) + 1 # Größe des Teilvektors auf dem akt. Rang: Differenz zw. Start- und Endindex + 1
# self.vec = array[
# self.start_idx: self.end_idx + 1] # Auf jedem Rang werden die Einträge vom Start bis zum Endindex gespeichert
# self.kind = 'column'
# self.dim = len(array)
#
# elif isinstance(array, list):
# self.vshape[0] = 1
# self.vshape[1] = len(array)
# self.start_idx = int(self.rank * len(array) / self.size)
# self.end_idx = int(len(array) / self.size + self.rank * len(array) / self.size) - 1
# self.rank_size = (self.end_idx - self.start_idx) + 1
# self.vec = np.array(array[self.start_idx:self.end_idx + 1])
# self.kind = 'row'
# self.dim = len(array)
# else:
# raise ValueError(
# "ERROR_1: Die übergebene Variable ist kein Numpy-Array, Keine Initialisierung der Vector-Klasse möglich.")
#
# def __add__(self, other): # Überschreibung der Addition
# if isinstance(self, Vector) and isinstance(other, Vector):
# Add_Vec = Vector(np.arange(self.dim))
# if self.vshape[0] == other.vshape[0] and self.vshape[1] == other.vshape[1]:
# for i in range(0, self.rank_size):
# Add_Vec.vec[i] = self.vec[i] + other.vec[i]
# else:
# raise ValueError("Die Dimensionen der Vektoren stimmen nicht überein, Addition nicht möglich.")
# elif isinstance(self, Vector) and isinstance(other, (int, float, complex)):
# Add_Vec = Vector(np.arange(self.dim))
# for i in range(0, self.rank_size):
# Add_Vec.vec[i] = self.vec[i] + other
# elif isinstance(self, (int, float, complex)) and isinstance(other, Vector):
# Add_Vec = Vector(np.arange(other.dim))
# for i in range(0, other.rank_size):
# Add_Vec.vec[i] = other.vec[i] + self
# else:
# raise ValueError("Ungeeigneter Datentyp für die Addition mit einem Vektor.")
# return Add_Vec
#
# def __radd__(self, other): # Überschreibung der Addition eines Vektors von rechts
# Vector(np.arange(self.dim))
# if isinstance(self, Vector) and isinstance(other, (int, float, complex)):
# Add_Vec = Vector(np.arange(self.dim))
# for i in range(0, self.rank_size):
# Add_Vec.vec[i] = self.vec[i] + other
# else:
# raise ValueError("Ungeeigneter Datentyp für die Addition mit einem Vektor.")
# return Add_Vec
#
# def __sub__(self, other): # Überschreibung der Subtraktion
# if isinstance(self, Vector) and isinstance(other, Vector):
# Sub_Vec = Vector(np.arange(self.dim))
# if self.vshape[0] == other.vshape[0] and self.vshape[1] == other.vshape[1]:
# for i in range(0, self.rank_size):
# Sub_Vec.vec[i] = self.vec[i] - other.vec[i]
# else:
# raise ValueError("Die Dimension der Vektoren stimmen nicht überein, Subtraktion nicht möglich.")
# elif isinstance(self, Vector) and isinstance(other, (int, float, complex)):
# Sub_Vec = Vector(np.arange(self.dim))
# for i in range(0, self.rank_size):
# Sub_Vec.vec[i] = self.vec[i] - other
# elif isinstance(self, (int, float, complex)) and isinstance(other, Vector):
# Sub_Vec = Vector(np.arange(self.dim))
# for i in range(0, other.rank_size):
# Sub_Vec.vec[i] = other.vec[i] - self
# else:
# raise ValueError("Ungeeigneter Datentyp für die Subtraktion mit einem Vektor.")
# return Sub_Vec
#
# def __rsub__(self, other): # Subtraktion einer Zahl von einem Vektor
# Sub_Vec = Vector(np.arange(self.dim))
# if isinstance(self, Vector) and isinstance(other, (float, int, complex)):
# for i in range(0, self.rank_size):
# Sub_Vec.vec[i] = self.vec[i] - other
# else:
# raise ValueError("Ungeeigneter Datentyp für die Subtraktion von einem Vektor.")
# return Sub_Vec
#
# def __mul__(self, other): # Überschreibung der Multiplikation
# if isinstance(self, Vector) and isinstance(other, Vector):
# Mult_Vec = Vector(np.arange(self.dim))
# if (self.vshape[0] == other.vshape[0] and self.vshape[1] == other.vshape[
# 1]): # Elementweise Multiplikation
# for i in range(0, self.rank_size):
# Mult_Vec.vec[i] = self.vec[i] * other.vec[i]
# elif self.vshape[1] == other.vshape[0] and self.vshape[0] == 1: # Inneres Produkt (Skalarprodukt)
# skal_prod = 0
# for i in range(0, self.rank_size):
# skal_prod = skal_prod + self.vec[i] * other.vec[i]
# return skal_prod
# elif self.vshape[0] == other.vshape[1] and self.vshape[1] == 1:
# raise ValueError("Kann erst implementiert werden, wenn Matrix-Klasse existiert.")
# else:
# raise ValueError("Die Dimensionen der Vektoren stimmen nicht überein, Multiplikation nicht möglich.")
# elif isinstance(self, Vector) and isinstance(other, (int, float, complex)):
# Mult_Vec = Vector(np.arange(self.dim))
# for i in range(0, self.rank_size):
# Mult_Vec.vec[i] = self.vec[i] * other
# elif isinstance(self, (int, float, complex)) and isinstance(other, Vector):
# Mult_Vec = Vector(np.arange(self.dim))
# for i in range(0, other.rank_size):
# Mult_Vec.vec[i] = other.vec[i] * self
# else:
# raise ValueError("Ungeeigneter Datentyp für die Multiplikation mit einem Vektor.")
# return Mult_Vec
#
# def __rmul__(self, other): # Rechtsseitige Multiplikation von einer Zahl an einen Vektor
# Mult_Vec = Vector(np.arange(self.dim))
# if isinstance(self, Vector) and isinstance(other, (int, float, complex)):
# for i in range(0, self.rank_size):
# Mult_Vec.vec[i] = self.vec[i] * other
# else:
# raise ValueError("Ungeeigneter Datentyp für die Multiplikation mit einem Vektor.")
# return Mult_Vec
#
# def __truediv__(self, other):
# Div_Vec = Vector(np.arange(self.dim, dtype=np.double))
# if isinstance(self, Vector) and isinstance(other, Vector):
# if self.vshape[0] == other.vshape[0] and self.vshape[1] == other.vshape[1]:
# for i in range(0, self.rank_size):
# if other.vec[i] == 0:
# raise ValueError("Ein Eintrag des Divisor-Vektors ist 0, Divion nicht möglich.")
# Div_Vec.vec[i] = self.vec[i] / other.vec[i]
# else:
# raise ValueError("Die Dimensionen der Vektoren stimmen nicht überein, Division nicht möglich.")
# elif isinstance(self, (int, float, complex)) and isinstance(other, Vector):
# for i in range(0, other.rank_size):
# if other.vec[i] == 0:
# raise ValueError("Ein Eintrag des Divisor-Vektors ist 0, Divion nicht möglich.")
# Div_Vec.vec[i] = self / other.vec[i]
# elif isinstance(self, Vector) and isinstance(other, (float, int, complex)):
# if other == 0:
# raise ValueError("Division durch Null ist nicht möglich.")
# else:
# for i in range(0, self.rank_size):
# Div_Vec.vec[i] = self.vec[i] / other
# else:
# raise ValueError("ERROR 11: Ungeeigneter Datentyp für die Division mit einem Vektor.")
# return Div_Vec
#
# def __rtruediv__(self, other):
# Div_Vec = Vector(np.arange(self.dim, dtype=np.double))
# if isinstance(self, Vector) and isinstance(other, (float, int, complex)):
# if other == 0:
# raise ValueError("Division durch Null ist nicht möglich.")
# else:
# for i in range(0, self.rank_size):
# Div_Vec.vec[i] = self.vec[i] / other
# else:
# raise ValueError("ERROR 10: Uneignete Datentyp, um einen Vektor durch diesen zu dividieren")
# return Div_Vec
#
# def __neg__(self):
# Neg_Vec = -1 * self
# return Neg_Vec
#
# def shape(self):
# if self.rank == 0:
# return self.vshape
#
# def T(self):
# Transpose = self
# if self.kind == 'row':
# Transpose.kind = 'column'
# else:
# Transpose.kind = 'row'
#
# # Tauschen der Dimensionen
# var_shift = self.vshape[0]
# Transpose.vshape[0] = self.vshape[1]
# Transpose.vshape[1] = var_shift
# return Transpose
#
# def str(self): # Rückgabe des gesamten Vektors als string
# str_rep = ''
#
# if self.rank == 0:
# if self.kind == 'row':
# str_rep = '[' + ','.join(map(str, self.vec))
# if self.kind == 'column':
# str_rep = '[' + '\n'.join(map(str, self.vec))
# if self.size > 1:
# self.comm.send(str_rep, dest=self.rank + 1)
#
# elif self.rank == self.size - 1:
# if self.kind == 'row':
# str_rep = self.comm.recv(source=self.rank - 1) + ',' + ','.join(map(str, self.vec))
# if self.kind == 'column':
# str_rep = self.comm.recv(source=self.rank - 1) + '\n' + '\n'.join(map(str, self.vec))
#
# else:
# if self.kind == 'row':
# str_rep = self.comm.recv(source=self.rank - 1) + ',' + ','.join(map(str, self.vec))
# if self.kind == 'column':
# str_rep = self.comm.recv(source=self.rank - 1) + '\n' + '\n'.join(map(str, self.vec))
# self.comm.send(str_rep, dest=self.rank + 1)
#
# str_rep = self.comm.bcast(str_rep, root=self.size - 1)
# if self.rank == 0:
# return str_rep + ']'
#
# def string(self, limit_entry): # Gibt den Vektor als String zurück bis zum Eintrag limit_entry
# str_rep = ''
#
# if limit_entry > self.vec_size:
# raise ValueError("ERROR_4: Die eingegebene Zahl ist größer, als der größte Index des Vectors.")
#
# # Rank 0
# if self.rank == 0 and limit_entry <= self.end_idx: # Limit_entry befindet sich im Rang 0
# if self.kind == 'row':
# str_rep = '[' + ','.join(map(str, self.vec[:limit_entry]))
# if self.kind == 'column':
# str_rep = '[' + '\n'.join(map(str, self.vec[:limit_entry]))
# if self.size > 1:
# self.comm.send(str_rep, dest=self.rank + 1)
# if self.rank == 0 and limit_entry > self.end_idx: # Limit_entry befindet sich nicht im Rang 0
# if self.kind == 'row':
# str_rep = '[' + ','.join(map(str, self.vec))
# if self.kind == 'column':
# str_rep = '[' + '\n'.join(map(str, self.vec))
# if self.size > 1:
# self.comm.send(str_rep, dest=self.rank + 1)
#
# # Rank im Intervall [1,size-1]
# if (
# 0 < self.rank < self.size - 1 and limit_entry <= self.start_idx): # wenn lim_ent == start_idx, dann wurden bereits alle relevanten Indizes im String gespeichert, da Vector nullinitialisiert ist
# str_rep = self.comm.recv(source=self.rank - 1)
# self.comm.send(str_rep, dest=self.rank + 1)
# if (
# 0 < self.rank < self.size - 1 and self.start_idx < limit_entry <= self.end_idx):
# if self.kind == 'row':
# str_rep = self.comm.recv(source=self.rank - 1) + ',' + ','.join(
# map(str, self.vec[:(limit_entry - self.start_idx)]))
# if self.kind == 'column':
# str_rep = self.comm.recv(source=self.rank - 1) + '\n' + '\n'.join(
# map(str, self.vec[:(limit_entry - self.start_idx)])) + ']'
# self.comm.send(str_rep, dest=self.rank + 1)
# if 0 < self.rank < self.size - 1 and limit_entry > self.end_idx:
# if self.kind == 'row':
# str_rep = self.comm.recv(source=self.rank - 1) + ',' + ','.join(map(str, self.vec))
# if self.kind == 'column':
# str_rep = self.comm.recv(source=self.rank - 1) + '\n' + '\n'.join(map(str, self.vec))
# self.comm.send(str_rep, dest=self.rank + 1)
#
# # Rank size-1
# if self.rank == self.size - 1 and limit_entry <= self.start_idx and self.rank > 1:
# str_rep = self.comm.recv(source=self.rank - 1)
#
# if self.rank == self.size - 1 and limit_entry >= self.start_idx and self.rank > 1:
# if self.kind == 'row':
# str_rep = self.comm.recv(source=self.rank - 1) + ',' + ','.join(
# map(str, self.vec[:(limit_entry - self.start_idx)]))
# if self.kind == 'column':
# str_rep = self.comm.recv(source=self.rank - 1) + '\n' + '\n'.join(
# map(str, self.vec[:(limit_entry - self.start_idx)]))
#
# str_rep = self.comm.bcast(str_rep, root=self.size - 1)
# if self.rank == 0:
# return str_rep + ']'
#
# def norm(self): # Berechnung der 2-Norm / euklidischen Norm
# 0
# sum_of_squares = 0
# if self.rank == 0:
# for i in range(0, self.rank_size):
# sum_of_squares = sum_of_squares + self.vec[i] ** 2
#
# if self.size > 1:
# self.comm.send(sum_of_squares, dest=self.rank + 1)
#
# elif self.rank == self.size - 1:
# sum_of_squares = self.comm.recv(source=self.rank - 1)
# for i in range(0, self.rank_size):
# sum_of_squares = sum_of_squares + self.vec[i] ** 2
#
# else:
# sum_of_squares = self.comm.recv(source=self.rank - 1)
# for i in range(0, self.rank_size):
# sum_of_squares = sum_of_squares + self.vec[i] ** 2
# self.comm.send(sum_of_squares, dest=self.rank + 1)
#
# sum_of_squares = self.comm.bcast(sum_of_squares, root=self.size - 1)
# norm = np.sqrt(sum_of_squares)
#
# return norm
#
# def normalize(self): # Normalisierung eines Vectors
# norm = self.norm()
# if norm == 0:
# return self
# normalized_vec = self / norm
# return normalized_vec
#
#
# # Main-Funktion
# x = Vector(np.arange(10))
# print(x.str(), x.shape())
# print(x.vshape[0], x.vshape[1])
# minus = -1 * x
# _x = -x
# print(_x.str())
# print(minus.str())
# y = Vector(2 * np.arange(10))
# print(y.str())
# z = x - y
# print(z.str())
# ae = x + 5
# print(ae.str())
# o = x * y
# print(o.str())
#
# a = Vector(np.array([[1], [2]]))
# b = Vector(np.array([1, 2]))
# print(a.shape())
# # c = a * b
# # print(c.vec)
def shape(self):
return self.__data__.shape()
def __eq__(self, other):
"""
Return ``self==value``
:param other: The object to compare to; must be either a ``Vector``, a ``list`` or a ``numpy.ndarray``
:return: True if data in the same-shaped vectors are equal to the given data in other for each component otherwise False
"""
if isinstance(other, VectorMPI):
return self.__data__ == other.__data__
else:
return self.__data__ == other
def transpose(self):
"""
:return: the transpose of the vector
"""
return VectorMPI.of(self.__data__.transpose())
def T(self):
return self.transpose()
def __neg__(self):
return VectorMPI.of(-self.__data__)
def __add__(self, other):
if isinstance(other, VectorMPI):
other = other.__data__
return VectorMPI.of(self.__data__ + other)
def __mul__(self, other):
if isinstance(other, VectorMPI):
other = other.__data__
result = self.__data__ * other
return VectorMPI.of(result) if isinstance(result, Vector) else result
def __rmul__(self, other):
if isinstance(other, MatrixMPI):
return VectorMPI.of(other.get_data() * self.get_vector())
return self * other
def __truediv__(self, other):
if isinstance(other, VectorMPI):
other = other.__data__
return VectorMPI.of(self.__data__ / other)
def norm(self, **kwargs):
"""
Computes the 2-norm of the vector which is the Frobenius-Norm of a nx1 matrix.
:param kwargs: ignored
:return: the 2-norm of the vector
"""
return self.__data__.norm()
def normalize(self):
"""
A normalized vector has the length (norm) 1.
To achieve that the vector is divided by the norm of itself.
:return: the normalized vector
"""
return VectorMPI.of(self.__data__ / self.norm())
def __getitem__(self, key):
return self.__data__[key]
def __setitem__(self, key, value):
self.__data__[key] = value