Prepare vector_mpi.py for proper implementation
This commit is contained in:
parent
3a4c0ed75d
commit
897fba6fb4
@ -1,363 +1,365 @@
|
||||
import numpy as np
|
||||
from mpi4py import MPI
|
||||
|
||||
|
||||
class Vector:
|
||||
start_idx = 0 # Nullter Eintrag des Vektors auf dem aktuellen Rang
|
||||
end_idx = 0 # Letzer Eintrag des Vektors auf dem aktuellen Rang
|
||||
rank_size = 0 # Dimension des Vektors der auf dem aktuellen Rang gespeichert wird
|
||||
kind = '' # Art des Vektors, Zeilen oder Spaltenvektor
|
||||
vec = np.arange(rank_size)
|
||||
vshape = np.arange(2) # Array mit Länge 2, um die Shape des Vektors zu speichern
|
||||
dim = 0 # Gesamtdimension des Vektors, Länge des Vektors
|
||||
|
||||
comm = MPI.COMM_WORLD
|
||||
size = comm.Get_size()
|
||||
rank = comm.Get_rank()
|
||||
|
||||
# Konstruktor
|
||||
def __init__(self, array):
|
||||
|
||||
if isinstance(array, np.ndarray):
|
||||
form = array.shape
|
||||
if len(array) < self.size:
|
||||
raise ValueError("ERROR_3: Die Dimension des Vektors ist kleiner als die Anzahl der benutzten Ränge.")
|
||||
|
||||
if len(form) > 2:
|
||||
raise ValueError("ERROR_2: Falsche Dimension, kann kein 1 x n oder n x 1 Vektor sein.")
|
||||
# Array ist Zeilenvektor:
|
||||
if len(form) == 1 or (len(form) == 2 and form[0] == 1):
|
||||
self.vshape[0] = 1
|
||||
self.vshape[1] = len(array) # Shape des Vectors
|
||||
self.start_idx = int(self.rank * len(array) / self.size)
|
||||
self.end_idx = int(len(array) / self.size + self.rank * len(array) / self.size) - 1
|
||||
self.rank_size = (
|
||||
self.end_idx - self.start_idx) + 1 # Größe des Teilvektors auf dem akt. Rang: Differenz zw. Start- und Endindex + 1
|
||||
self.vec = array[
|
||||
self.start_idx: self.end_idx + 1] # Auf jedem Rang werden die Einträge vom Start bis zum Endindex gespeichert
|
||||
self.kind = 'row'
|
||||
self.dim = len(array)
|
||||
|
||||
# Array ist Spaltenvektor
|
||||
if len(form) == 2 and form[1] == 1:
|
||||
self.vshape[0] = len(array)
|
||||
self.vshape[1] = 1
|
||||
self.start_idx = int(self.rank * len(array) / self.size)
|
||||
self.end_idx = int(len(array) / self.size + self.rank * len(array) / self.size) - 1
|
||||
self.rank_size = (
|
||||
self.end_idx - self.start_idx) + 1 # Größe des Teilvektors auf dem akt. Rang: Differenz zw. Start- und Endindex + 1
|
||||
self.vec = array[
|
||||
self.start_idx: self.end_idx + 1] # Auf jedem Rang werden die Einträge vom Start bis zum Endindex gespeichert
|
||||
self.kind = 'column'
|
||||
self.dim = len(array)
|
||||
|
||||
elif isinstance(array, list):
|
||||
self.vshape[0] = 1
|
||||
self.vshape[1] = len(array)
|
||||
self.start_idx = int(self.rank * len(array) / self.size)
|
||||
self.end_idx = int(len(array) / self.size + self.rank * len(array) / self.size) - 1
|
||||
self.rank_size = (self.end_idx - self.start_idx) + 1
|
||||
self.vec = np.array(array[self.start_idx:self.end_idx + 1])
|
||||
self.kind = 'row'
|
||||
self.dim = len(array)
|
||||
else:
|
||||
raise ValueError(
|
||||
"ERROR_1: Die übergebene Variable ist kein Numpy-Array, Keine Initialisierung der Vector-Klasse möglich.")
|
||||
|
||||
def __add__(self, other): # Überschreibung der Addition
|
||||
if isinstance(self, Vector) and isinstance(other, Vector):
|
||||
Add_Vec = Vector(np.arange(self.dim))
|
||||
if self.vshape[0] == other.vshape[0] and self.vshape[1] == other.vshape[1]:
|
||||
for i in range(0, self.rank_size):
|
||||
Add_Vec.vec[i] = self.vec[i] + other.vec[i]
|
||||
else:
|
||||
raise ValueError("Die Dimensionen der Vektoren stimmen nicht überein, Addition nicht möglich.")
|
||||
elif isinstance(self, Vector) and isinstance(other, (int, float, complex)):
|
||||
Add_Vec = Vector(np.arange(self.dim))
|
||||
for i in range(0, self.rank_size):
|
||||
Add_Vec.vec[i] = self.vec[i] + other
|
||||
elif isinstance(self, (int, float, complex)) and isinstance(other, Vector):
|
||||
Add_Vec = Vector(np.arange(other.dim))
|
||||
for i in range(0, other.rank_size):
|
||||
Add_Vec.vec[i] = other.vec[i] + self
|
||||
else:
|
||||
raise ValueError("Ungeeigneter Datentyp für die Addition mit einem Vektor.")
|
||||
return Add_Vec
|
||||
|
||||
def __radd__(self, other): # Überschreibung der Addition eines Vektors von rechts
|
||||
Vector(np.arange(self.dim))
|
||||
if isinstance(self, Vector) and isinstance(other, (int, float, complex)):
|
||||
Add_Vec = Vector(np.arange(self.dim))
|
||||
for i in range(0, self.rank_size):
|
||||
Add_Vec.vec[i] = self.vec[i] + other
|
||||
else:
|
||||
raise ValueError("Ungeeigneter Datentyp für die Addition mit einem Vektor.")
|
||||
return Add_Vec
|
||||
|
||||
def __sub__(self, other): # Überschreibung der Subtraktion
|
||||
if isinstance(self, Vector) and isinstance(other, Vector):
|
||||
Sub_Vec = Vector(np.arange(self.dim))
|
||||
if self.vshape[0] == other.vshape[0] and self.vshape[1] == other.vshape[1]:
|
||||
for i in range(0, self.rank_size):
|
||||
Sub_Vec.vec[i] = self.vec[i] - other.vec[i]
|
||||
else:
|
||||
raise ValueError("Die Dimension der Vektoren stimmen nicht überein, Subtraktion nicht möglich.")
|
||||
elif isinstance(self, Vector) and isinstance(other, (int, float, complex)):
|
||||
Sub_Vec = Vector(np.arange(self.dim))
|
||||
for i in range(0, self.rank_size):
|
||||
Sub_Vec.vec[i] = self.vec[i] - other
|
||||
elif isinstance(self, (int, float, complex)) and isinstance(other, Vector):
|
||||
Sub_Vec = Vector(np.arange(self.dim))
|
||||
for i in range(0, other.rank_size):
|
||||
Sub_Vec.vec[i] = other.vec[i] - self
|
||||
else:
|
||||
raise ValueError("Ungeeigneter Datentyp für die Subtraktion mit einem Vektor.")
|
||||
return Sub_Vec
|
||||
|
||||
def __rsub__(self, other): # Subtraktion einer Zahl von einem Vektor
|
||||
Sub_Vec = Vector(np.arange(self.dim))
|
||||
if isinstance(self, Vector) and isinstance(other, (float, int, complex)):
|
||||
for i in range(0, self.rank_size):
|
||||
Sub_Vec.vec[i] = self.vec[i] - other
|
||||
else:
|
||||
raise ValueError("Ungeeigneter Datentyp für die Subtraktion von einem Vektor.")
|
||||
return Sub_Vec
|
||||
|
||||
def __mul__(self, other): # Überschreibung der Multiplikation
|
||||
if isinstance(self, Vector) and isinstance(other, Vector):
|
||||
Mult_Vec = Vector(np.arange(self.dim))
|
||||
if (self.vshape[0] == other.vshape[0] and self.vshape[1] == other.vshape[
|
||||
1]): # Elementweise Multiplikation
|
||||
for i in range(0, self.rank_size):
|
||||
Mult_Vec.vec[i] = self.vec[i] * other.vec[i]
|
||||
elif self.vshape[1] == other.vshape[0] and self.vshape[0] == 1: # Inneres Produkt (Skalarprodukt)
|
||||
skal_prod = 0
|
||||
for i in range(0, self.rank_size):
|
||||
skal_prod = skal_prod + self.vec[i] * other.vec[i]
|
||||
return skal_prod
|
||||
elif self.vshape[0] == other.vshape[1] and self.vshape[1] == 1:
|
||||
raise ValueError("Kann erst implementiert werden, wenn Matrix-Klasse existiert.")
|
||||
else:
|
||||
raise ValueError("Die Dimensionen der Vektoren stimmen nicht überein, Multiplikation nicht möglich.")
|
||||
elif isinstance(self, Vector) and isinstance(other, (int, float, complex)):
|
||||
Mult_Vec = Vector(np.arange(self.dim))
|
||||
for i in range(0, self.rank_size):
|
||||
Mult_Vec.vec[i] = self.vec[i] * other
|
||||
elif isinstance(self, (int, float, complex)) and isinstance(other, Vector):
|
||||
Mult_Vec = Vector(np.arange(self.dim))
|
||||
for i in range(0, other.rank_size):
|
||||
Mult_Vec.vec[i] = other.vec[i] * self
|
||||
else:
|
||||
raise ValueError("Ungeeigneter Datentyp für die Multiplikation mit einem Vektor.")
|
||||
return Mult_Vec
|
||||
|
||||
def __rmul__(self, other): # Rechtsseitige Multiplikation von einer Zahl an einen Vektor
|
||||
Mult_Vec = Vector(np.arange(self.dim))
|
||||
if isinstance(self, Vector) and isinstance(other, (int, float, complex)):
|
||||
for i in range(0, self.rank_size):
|
||||
Mult_Vec.vec[i] = self.vec[i] * other
|
||||
else:
|
||||
raise ValueError("Ungeeigneter Datentyp für die Multiplikation mit einem Vektor.")
|
||||
return Mult_Vec
|
||||
|
||||
def __truediv__(self, other):
|
||||
Div_Vec = Vector(np.arange(self.dim, dtype=np.double))
|
||||
if isinstance(self, Vector) and isinstance(other, Vector):
|
||||
if self.vshape[0] == other.vshape[0] and self.vshape[1] == other.vshape[1]:
|
||||
for i in range(0, self.rank_size):
|
||||
if other.vec[i] == 0:
|
||||
raise ValueError("Ein Eintrag des Divisor-Vektors ist 0, Divion nicht möglich.")
|
||||
Div_Vec.vec[i] = self.vec[i] / other.vec[i]
|
||||
else:
|
||||
raise ValueError("Die Dimensionen der Vektoren stimmen nicht überein, Division nicht möglich.")
|
||||
elif isinstance(self, (int, float, complex)) and isinstance(other, Vector):
|
||||
for i in range(0, other.rank_size):
|
||||
if other.vec[i] == 0:
|
||||
raise ValueError("Ein Eintrag des Divisor-Vektors ist 0, Divion nicht möglich.")
|
||||
Div_Vec.vec[i] = self / other.vec[i]
|
||||
elif isinstance(self, Vector) and isinstance(other, (float, int, complex)):
|
||||
if other == 0:
|
||||
raise ValueError("Division durch Null ist nicht möglich.")
|
||||
else:
|
||||
for i in range(0, self.rank_size):
|
||||
Div_Vec.vec[i] = self.vec[i] / other
|
||||
else:
|
||||
raise ValueError("ERROR 11: Ungeeigneter Datentyp für die Division mit einem Vektor.")
|
||||
return Div_Vec
|
||||
|
||||
def __rtruediv__(self, other):
|
||||
Div_Vec = Vector(np.arange(self.dim, dtype=np.double))
|
||||
if isinstance(self, Vector) and isinstance(other, (float, int, complex)):
|
||||
if other == 0:
|
||||
raise ValueError("Division durch Null ist nicht möglich.")
|
||||
else:
|
||||
for i in range(0, self.rank_size):
|
||||
Div_Vec.vec[i] = self.vec[i] / other
|
||||
else:
|
||||
raise ValueError("ERROR 10: Uneignete Datentyp, um einen Vektor durch diesen zu dividieren")
|
||||
return Div_Vec
|
||||
|
||||
def __neg__(self):
|
||||
Neg_Vec = -1 * self
|
||||
return Neg_Vec
|
||||
|
||||
def shape(self):
|
||||
if self.rank == 0:
|
||||
return self.vshape
|
||||
|
||||
def T(self):
|
||||
Transpose = self
|
||||
if self.kind == 'row':
|
||||
Transpose.kind = 'column'
|
||||
else:
|
||||
Transpose.kind = 'row'
|
||||
|
||||
# Tauschen der Dimensionen
|
||||
var_shift = self.vshape[0]
|
||||
Transpose.vshape[0] = self.vshape[1]
|
||||
Transpose.vshape[1] = var_shift
|
||||
return Transpose
|
||||
|
||||
def str(self): # Rückgabe des gesamten Vektors als string
|
||||
str_rep = ''
|
||||
|
||||
if self.rank == 0:
|
||||
if self.kind == 'row':
|
||||
str_rep = '[' + ','.join(map(str, self.vec))
|
||||
if self.kind == 'column':
|
||||
str_rep = '[' + '\n'.join(map(str, self.vec))
|
||||
if self.size > 1:
|
||||
self.comm.send(str_rep, dest=self.rank + 1)
|
||||
|
||||
elif self.rank == self.size - 1:
|
||||
if self.kind == 'row':
|
||||
str_rep = self.comm.recv(source=self.rank - 1) + ',' + ','.join(map(str, self.vec))
|
||||
if self.kind == 'column':
|
||||
str_rep = self.comm.recv(source=self.rank - 1) + '\n' + '\n'.join(map(str, self.vec))
|
||||
|
||||
else:
|
||||
if self.kind == 'row':
|
||||
str_rep = self.comm.recv(source=self.rank - 1) + ',' + ','.join(map(str, self.vec))
|
||||
if self.kind == 'column':
|
||||
str_rep = self.comm.recv(source=self.rank - 1) + '\n' + '\n'.join(map(str, self.vec))
|
||||
self.comm.send(str_rep, dest=self.rank + 1)
|
||||
|
||||
str_rep = self.comm.bcast(str_rep, root=self.size - 1)
|
||||
if self.rank == 0:
|
||||
return str_rep + ']'
|
||||
|
||||
def string(self, limit_entry): # Gibt den Vektor als String zurück bis zum Eintrag limit_entry
|
||||
str_rep = ''
|
||||
|
||||
if limit_entry > self.vec_size:
|
||||
raise ValueError("ERROR_4: Die eingegebene Zahl ist größer, als der größte Index des Vectors.")
|
||||
|
||||
# Rank 0
|
||||
if self.rank == 0 and limit_entry <= self.end_idx: # Limit_entry befindet sich im Rang 0
|
||||
if self.kind == 'row':
|
||||
str_rep = '[' + ','.join(map(str, self.vec[:limit_entry]))
|
||||
if self.kind == 'column':
|
||||
str_rep = '[' + '\n'.join(map(str, self.vec[:limit_entry]))
|
||||
if self.size > 1:
|
||||
self.comm.send(str_rep, dest=self.rank + 1)
|
||||
if self.rank == 0 and limit_entry > self.end_idx: # Limit_entry befindet sich nicht im Rang 0
|
||||
if self.kind == 'row':
|
||||
str_rep = '[' + ','.join(map(str, self.vec))
|
||||
if self.kind == 'column':
|
||||
str_rep = '[' + '\n'.join(map(str, self.vec))
|
||||
if self.size > 1:
|
||||
self.comm.send(str_rep, dest=self.rank + 1)
|
||||
|
||||
# Rank im Intervall [1,size-1]
|
||||
if (
|
||||
0 < self.rank < self.size - 1 and limit_entry <= self.start_idx): # wenn lim_ent == start_idx, dann wurden bereits alle relevanten Indizes im String gespeichert, da Vector nullinitialisiert ist
|
||||
str_rep = self.comm.recv(source=self.rank - 1)
|
||||
self.comm.send(str_rep, dest=self.rank + 1)
|
||||
if (
|
||||
0 < self.rank < self.size - 1 and self.start_idx < limit_entry <= self.end_idx):
|
||||
if self.kind == 'row':
|
||||
str_rep = self.comm.recv(source=self.rank - 1) + ',' + ','.join(
|
||||
map(str, self.vec[:(limit_entry - self.start_idx)]))
|
||||
if self.kind == 'column':
|
||||
str_rep = self.comm.recv(source=self.rank - 1) + '\n' + '\n'.join(
|
||||
map(str, self.vec[:(limit_entry - self.start_idx)])) + ']'
|
||||
self.comm.send(str_rep, dest=self.rank + 1)
|
||||
if 0 < self.rank < self.size - 1 and limit_entry > self.end_idx:
|
||||
if self.kind == 'row':
|
||||
str_rep = self.comm.recv(source=self.rank - 1) + ',' + ','.join(map(str, self.vec))
|
||||
if self.kind == 'column':
|
||||
str_rep = self.comm.recv(source=self.rank - 1) + '\n' + '\n'.join(map(str, self.vec))
|
||||
self.comm.send(str_rep, dest=self.rank + 1)
|
||||
|
||||
# Rank size-1
|
||||
if self.rank == self.size - 1 and limit_entry <= self.start_idx and self.rank > 1:
|
||||
str_rep = self.comm.recv(source=self.rank - 1)
|
||||
|
||||
if self.rank == self.size - 1 and limit_entry >= self.start_idx and self.rank > 1:
|
||||
if self.kind == 'row':
|
||||
str_rep = self.comm.recv(source=self.rank - 1) + ',' + ','.join(
|
||||
map(str, self.vec[:(limit_entry - self.start_idx)]))
|
||||
if self.kind == 'column':
|
||||
str_rep = self.comm.recv(source=self.rank - 1) + '\n' + '\n'.join(
|
||||
map(str, self.vec[:(limit_entry - self.start_idx)]))
|
||||
|
||||
str_rep = self.comm.bcast(str_rep, root=self.size - 1)
|
||||
if self.rank == 0:
|
||||
return str_rep + ']'
|
||||
|
||||
def norm(self): # Berechnung der 2-Norm / euklidischen Norm
|
||||
0
|
||||
sum_of_squares = 0
|
||||
if self.rank == 0:
|
||||
for i in range(0, self.rank_size):
|
||||
sum_of_squares = sum_of_squares + self.vec[i] ** 2
|
||||
|
||||
if self.size > 1:
|
||||
self.comm.send(sum_of_squares, dest=self.rank + 1)
|
||||
|
||||
elif self.rank == self.size - 1:
|
||||
sum_of_squares = self.comm.recv(source=self.rank - 1)
|
||||
for i in range(0, self.rank_size):
|
||||
sum_of_squares = sum_of_squares + self.vec[i] ** 2
|
||||
|
||||
else:
|
||||
sum_of_squares = self.comm.recv(source=self.rank - 1)
|
||||
for i in range(0, self.rank_size):
|
||||
sum_of_squares = sum_of_squares + self.vec[i] ** 2
|
||||
self.comm.send(sum_of_squares, dest=self.rank + 1)
|
||||
|
||||
sum_of_squares = self.comm.bcast(sum_of_squares, root=self.size - 1)
|
||||
norm = np.sqrt(sum_of_squares)
|
||||
|
||||
return norm
|
||||
|
||||
def normalize(self): # Normalisierung eines Vectors
|
||||
norm = self.norm()
|
||||
if norm == 0:
|
||||
return self
|
||||
normalized_vec = self / norm
|
||||
return normalized_vec
|
||||
|
||||
|
||||
# Main-Funktion
|
||||
x = Vector(np.arange(10))
|
||||
print(x.str(), x.shape())
|
||||
print(x.vshape[0], x.vshape[1])
|
||||
minus = -1 * x
|
||||
_x = -x
|
||||
print(_x.str())
|
||||
print(minus.str())
|
||||
y = Vector(2 * np.arange(10))
|
||||
print(y.str())
|
||||
z = x - y
|
||||
print(z.str())
|
||||
ae = x + 5
|
||||
print(ae.str())
|
||||
o = x * y
|
||||
print(o.str())
|
||||
|
||||
a = Vector(np.array([[1], [2]]))
|
||||
b = Vector(np.array([1, 2]))
|
||||
print(a.shape())
|
||||
# c = a * b
|
||||
# print(c.vec)
|
||||
from mpi4py import MPI
|
||||
|
||||
|
||||
class VectorMPI:
|
||||
...
|
||||
|
||||
# class Vector:
|
||||
# start_idx = 0 # Nullter Eintrag des Vektors auf dem aktuellen Rang
|
||||
# end_idx = 0 # Letzer Eintrag des Vektors auf dem aktuellen Rang
|
||||
# rank_size = 0 # Dimension des Vektors der auf dem aktuellen Rang gespeichert wird
|
||||
# kind = '' # Art des Vektors, Zeilen oder Spaltenvektor
|
||||
# vec = np.arange(rank_size)
|
||||
# vshape = np.arange(2) # Array mit Länge 2, um die Shape des Vektors zu speichern
|
||||
# dim = 0 # Gesamtdimension des Vektors, Länge des Vektors
|
||||
#
|
||||
# comm = MPI.COMM_WORLD
|
||||
# size = comm.Get_size()
|
||||
# rank = comm.Get_rank()
|
||||
#
|
||||
# # Konstruktor
|
||||
# def __init__(self, array):
|
||||
#
|
||||
# if isinstance(array, np.ndarray):
|
||||
# form = array.shape
|
||||
# if len(array) < self.size:
|
||||
# raise ValueError("ERROR_3: Die Dimension des Vektors ist kleiner als die Anzahl der benutzten Ränge.")
|
||||
#
|
||||
# if len(form) > 2:
|
||||
# raise ValueError("ERROR_2: Falsche Dimension, kann kein 1 x n oder n x 1 Vektor sein.")
|
||||
# # Array ist Zeilenvektor:
|
||||
# if len(form) == 1 or (len(form) == 2 and form[0] == 1):
|
||||
# self.vshape[0] = 1
|
||||
# self.vshape[1] = len(array) # Shape des Vectors
|
||||
# self.start_idx = int(self.rank * len(array) / self.size)
|
||||
# self.end_idx = int(len(array) / self.size + self.rank * len(array) / self.size) - 1
|
||||
# self.rank_size = (
|
||||
# self.end_idx - self.start_idx) + 1 # Größe des Teilvektors auf dem akt. Rang: Differenz zw. Start- und Endindex + 1
|
||||
# self.vec = array[
|
||||
# self.start_idx: self.end_idx + 1] # Auf jedem Rang werden die Einträge vom Start bis zum Endindex gespeichert
|
||||
# self.kind = 'row'
|
||||
# self.dim = len(array)
|
||||
#
|
||||
# # Array ist Spaltenvektor
|
||||
# if len(form) == 2 and form[1] == 1:
|
||||
# self.vshape[0] = len(array)
|
||||
# self.vshape[1] = 1
|
||||
# self.start_idx = int(self.rank * len(array) / self.size)
|
||||
# self.end_idx = int(len(array) / self.size + self.rank * len(array) / self.size) - 1
|
||||
# self.rank_size = (
|
||||
# self.end_idx - self.start_idx) + 1 # Größe des Teilvektors auf dem akt. Rang: Differenz zw. Start- und Endindex + 1
|
||||
# self.vec = array[
|
||||
# self.start_idx: self.end_idx + 1] # Auf jedem Rang werden die Einträge vom Start bis zum Endindex gespeichert
|
||||
# self.kind = 'column'
|
||||
# self.dim = len(array)
|
||||
#
|
||||
# elif isinstance(array, list):
|
||||
# self.vshape[0] = 1
|
||||
# self.vshape[1] = len(array)
|
||||
# self.start_idx = int(self.rank * len(array) / self.size)
|
||||
# self.end_idx = int(len(array) / self.size + self.rank * len(array) / self.size) - 1
|
||||
# self.rank_size = (self.end_idx - self.start_idx) + 1
|
||||
# self.vec = np.array(array[self.start_idx:self.end_idx + 1])
|
||||
# self.kind = 'row'
|
||||
# self.dim = len(array)
|
||||
# else:
|
||||
# raise ValueError(
|
||||
# "ERROR_1: Die übergebene Variable ist kein Numpy-Array, Keine Initialisierung der Vector-Klasse möglich.")
|
||||
#
|
||||
# def __add__(self, other): # Überschreibung der Addition
|
||||
# if isinstance(self, Vector) and isinstance(other, Vector):
|
||||
# Add_Vec = Vector(np.arange(self.dim))
|
||||
# if self.vshape[0] == other.vshape[0] and self.vshape[1] == other.vshape[1]:
|
||||
# for i in range(0, self.rank_size):
|
||||
# Add_Vec.vec[i] = self.vec[i] + other.vec[i]
|
||||
# else:
|
||||
# raise ValueError("Die Dimensionen der Vektoren stimmen nicht überein, Addition nicht möglich.")
|
||||
# elif isinstance(self, Vector) and isinstance(other, (int, float, complex)):
|
||||
# Add_Vec = Vector(np.arange(self.dim))
|
||||
# for i in range(0, self.rank_size):
|
||||
# Add_Vec.vec[i] = self.vec[i] + other
|
||||
# elif isinstance(self, (int, float, complex)) and isinstance(other, Vector):
|
||||
# Add_Vec = Vector(np.arange(other.dim))
|
||||
# for i in range(0, other.rank_size):
|
||||
# Add_Vec.vec[i] = other.vec[i] + self
|
||||
# else:
|
||||
# raise ValueError("Ungeeigneter Datentyp für die Addition mit einem Vektor.")
|
||||
# return Add_Vec
|
||||
#
|
||||
# def __radd__(self, other): # Überschreibung der Addition eines Vektors von rechts
|
||||
# Vector(np.arange(self.dim))
|
||||
# if isinstance(self, Vector) and isinstance(other, (int, float, complex)):
|
||||
# Add_Vec = Vector(np.arange(self.dim))
|
||||
# for i in range(0, self.rank_size):
|
||||
# Add_Vec.vec[i] = self.vec[i] + other
|
||||
# else:
|
||||
# raise ValueError("Ungeeigneter Datentyp für die Addition mit einem Vektor.")
|
||||
# return Add_Vec
|
||||
#
|
||||
# def __sub__(self, other): # Überschreibung der Subtraktion
|
||||
# if isinstance(self, Vector) and isinstance(other, Vector):
|
||||
# Sub_Vec = Vector(np.arange(self.dim))
|
||||
# if self.vshape[0] == other.vshape[0] and self.vshape[1] == other.vshape[1]:
|
||||
# for i in range(0, self.rank_size):
|
||||
# Sub_Vec.vec[i] = self.vec[i] - other.vec[i]
|
||||
# else:
|
||||
# raise ValueError("Die Dimension der Vektoren stimmen nicht überein, Subtraktion nicht möglich.")
|
||||
# elif isinstance(self, Vector) and isinstance(other, (int, float, complex)):
|
||||
# Sub_Vec = Vector(np.arange(self.dim))
|
||||
# for i in range(0, self.rank_size):
|
||||
# Sub_Vec.vec[i] = self.vec[i] - other
|
||||
# elif isinstance(self, (int, float, complex)) and isinstance(other, Vector):
|
||||
# Sub_Vec = Vector(np.arange(self.dim))
|
||||
# for i in range(0, other.rank_size):
|
||||
# Sub_Vec.vec[i] = other.vec[i] - self
|
||||
# else:
|
||||
# raise ValueError("Ungeeigneter Datentyp für die Subtraktion mit einem Vektor.")
|
||||
# return Sub_Vec
|
||||
#
|
||||
# def __rsub__(self, other): # Subtraktion einer Zahl von einem Vektor
|
||||
# Sub_Vec = Vector(np.arange(self.dim))
|
||||
# if isinstance(self, Vector) and isinstance(other, (float, int, complex)):
|
||||
# for i in range(0, self.rank_size):
|
||||
# Sub_Vec.vec[i] = self.vec[i] - other
|
||||
# else:
|
||||
# raise ValueError("Ungeeigneter Datentyp für die Subtraktion von einem Vektor.")
|
||||
# return Sub_Vec
|
||||
#
|
||||
# def __mul__(self, other): # Überschreibung der Multiplikation
|
||||
# if isinstance(self, Vector) and isinstance(other, Vector):
|
||||
# Mult_Vec = Vector(np.arange(self.dim))
|
||||
# if (self.vshape[0] == other.vshape[0] and self.vshape[1] == other.vshape[
|
||||
# 1]): # Elementweise Multiplikation
|
||||
# for i in range(0, self.rank_size):
|
||||
# Mult_Vec.vec[i] = self.vec[i] * other.vec[i]
|
||||
# elif self.vshape[1] == other.vshape[0] and self.vshape[0] == 1: # Inneres Produkt (Skalarprodukt)
|
||||
# skal_prod = 0
|
||||
# for i in range(0, self.rank_size):
|
||||
# skal_prod = skal_prod + self.vec[i] * other.vec[i]
|
||||
# return skal_prod
|
||||
# elif self.vshape[0] == other.vshape[1] and self.vshape[1] == 1:
|
||||
# raise ValueError("Kann erst implementiert werden, wenn Matrix-Klasse existiert.")
|
||||
# else:
|
||||
# raise ValueError("Die Dimensionen der Vektoren stimmen nicht überein, Multiplikation nicht möglich.")
|
||||
# elif isinstance(self, Vector) and isinstance(other, (int, float, complex)):
|
||||
# Mult_Vec = Vector(np.arange(self.dim))
|
||||
# for i in range(0, self.rank_size):
|
||||
# Mult_Vec.vec[i] = self.vec[i] * other
|
||||
# elif isinstance(self, (int, float, complex)) and isinstance(other, Vector):
|
||||
# Mult_Vec = Vector(np.arange(self.dim))
|
||||
# for i in range(0, other.rank_size):
|
||||
# Mult_Vec.vec[i] = other.vec[i] * self
|
||||
# else:
|
||||
# raise ValueError("Ungeeigneter Datentyp für die Multiplikation mit einem Vektor.")
|
||||
# return Mult_Vec
|
||||
#
|
||||
# def __rmul__(self, other): # Rechtsseitige Multiplikation von einer Zahl an einen Vektor
|
||||
# Mult_Vec = Vector(np.arange(self.dim))
|
||||
# if isinstance(self, Vector) and isinstance(other, (int, float, complex)):
|
||||
# for i in range(0, self.rank_size):
|
||||
# Mult_Vec.vec[i] = self.vec[i] * other
|
||||
# else:
|
||||
# raise ValueError("Ungeeigneter Datentyp für die Multiplikation mit einem Vektor.")
|
||||
# return Mult_Vec
|
||||
#
|
||||
# def __truediv__(self, other):
|
||||
# Div_Vec = Vector(np.arange(self.dim, dtype=np.double))
|
||||
# if isinstance(self, Vector) and isinstance(other, Vector):
|
||||
# if self.vshape[0] == other.vshape[0] and self.vshape[1] == other.vshape[1]:
|
||||
# for i in range(0, self.rank_size):
|
||||
# if other.vec[i] == 0:
|
||||
# raise ValueError("Ein Eintrag des Divisor-Vektors ist 0, Divion nicht möglich.")
|
||||
# Div_Vec.vec[i] = self.vec[i] / other.vec[i]
|
||||
# else:
|
||||
# raise ValueError("Die Dimensionen der Vektoren stimmen nicht überein, Division nicht möglich.")
|
||||
# elif isinstance(self, (int, float, complex)) and isinstance(other, Vector):
|
||||
# for i in range(0, other.rank_size):
|
||||
# if other.vec[i] == 0:
|
||||
# raise ValueError("Ein Eintrag des Divisor-Vektors ist 0, Divion nicht möglich.")
|
||||
# Div_Vec.vec[i] = self / other.vec[i]
|
||||
# elif isinstance(self, Vector) and isinstance(other, (float, int, complex)):
|
||||
# if other == 0:
|
||||
# raise ValueError("Division durch Null ist nicht möglich.")
|
||||
# else:
|
||||
# for i in range(0, self.rank_size):
|
||||
# Div_Vec.vec[i] = self.vec[i] / other
|
||||
# else:
|
||||
# raise ValueError("ERROR 11: Ungeeigneter Datentyp für die Division mit einem Vektor.")
|
||||
# return Div_Vec
|
||||
#
|
||||
# def __rtruediv__(self, other):
|
||||
# Div_Vec = Vector(np.arange(self.dim, dtype=np.double))
|
||||
# if isinstance(self, Vector) and isinstance(other, (float, int, complex)):
|
||||
# if other == 0:
|
||||
# raise ValueError("Division durch Null ist nicht möglich.")
|
||||
# else:
|
||||
# for i in range(0, self.rank_size):
|
||||
# Div_Vec.vec[i] = self.vec[i] / other
|
||||
# else:
|
||||
# raise ValueError("ERROR 10: Uneignete Datentyp, um einen Vektor durch diesen zu dividieren")
|
||||
# return Div_Vec
|
||||
#
|
||||
# def __neg__(self):
|
||||
# Neg_Vec = -1 * self
|
||||
# return Neg_Vec
|
||||
#
|
||||
# def shape(self):
|
||||
# if self.rank == 0:
|
||||
# return self.vshape
|
||||
#
|
||||
# def T(self):
|
||||
# Transpose = self
|
||||
# if self.kind == 'row':
|
||||
# Transpose.kind = 'column'
|
||||
# else:
|
||||
# Transpose.kind = 'row'
|
||||
#
|
||||
# # Tauschen der Dimensionen
|
||||
# var_shift = self.vshape[0]
|
||||
# Transpose.vshape[0] = self.vshape[1]
|
||||
# Transpose.vshape[1] = var_shift
|
||||
# return Transpose
|
||||
#
|
||||
# def str(self): # Rückgabe des gesamten Vektors als string
|
||||
# str_rep = ''
|
||||
#
|
||||
# if self.rank == 0:
|
||||
# if self.kind == 'row':
|
||||
# str_rep = '[' + ','.join(map(str, self.vec))
|
||||
# if self.kind == 'column':
|
||||
# str_rep = '[' + '\n'.join(map(str, self.vec))
|
||||
# if self.size > 1:
|
||||
# self.comm.send(str_rep, dest=self.rank + 1)
|
||||
#
|
||||
# elif self.rank == self.size - 1:
|
||||
# if self.kind == 'row':
|
||||
# str_rep = self.comm.recv(source=self.rank - 1) + ',' + ','.join(map(str, self.vec))
|
||||
# if self.kind == 'column':
|
||||
# str_rep = self.comm.recv(source=self.rank - 1) + '\n' + '\n'.join(map(str, self.vec))
|
||||
#
|
||||
# else:
|
||||
# if self.kind == 'row':
|
||||
# str_rep = self.comm.recv(source=self.rank - 1) + ',' + ','.join(map(str, self.vec))
|
||||
# if self.kind == 'column':
|
||||
# str_rep = self.comm.recv(source=self.rank - 1) + '\n' + '\n'.join(map(str, self.vec))
|
||||
# self.comm.send(str_rep, dest=self.rank + 1)
|
||||
#
|
||||
# str_rep = self.comm.bcast(str_rep, root=self.size - 1)
|
||||
# if self.rank == 0:
|
||||
# return str_rep + ']'
|
||||
#
|
||||
# def string(self, limit_entry): # Gibt den Vektor als String zurück bis zum Eintrag limit_entry
|
||||
# str_rep = ''
|
||||
#
|
||||
# if limit_entry > self.vec_size:
|
||||
# raise ValueError("ERROR_4: Die eingegebene Zahl ist größer, als der größte Index des Vectors.")
|
||||
#
|
||||
# # Rank 0
|
||||
# if self.rank == 0 and limit_entry <= self.end_idx: # Limit_entry befindet sich im Rang 0
|
||||
# if self.kind == 'row':
|
||||
# str_rep = '[' + ','.join(map(str, self.vec[:limit_entry]))
|
||||
# if self.kind == 'column':
|
||||
# str_rep = '[' + '\n'.join(map(str, self.vec[:limit_entry]))
|
||||
# if self.size > 1:
|
||||
# self.comm.send(str_rep, dest=self.rank + 1)
|
||||
# if self.rank == 0 and limit_entry > self.end_idx: # Limit_entry befindet sich nicht im Rang 0
|
||||
# if self.kind == 'row':
|
||||
# str_rep = '[' + ','.join(map(str, self.vec))
|
||||
# if self.kind == 'column':
|
||||
# str_rep = '[' + '\n'.join(map(str, self.vec))
|
||||
# if self.size > 1:
|
||||
# self.comm.send(str_rep, dest=self.rank + 1)
|
||||
#
|
||||
# # Rank im Intervall [1,size-1]
|
||||
# if (
|
||||
# 0 < self.rank < self.size - 1 and limit_entry <= self.start_idx): # wenn lim_ent == start_idx, dann wurden bereits alle relevanten Indizes im String gespeichert, da Vector nullinitialisiert ist
|
||||
# str_rep = self.comm.recv(source=self.rank - 1)
|
||||
# self.comm.send(str_rep, dest=self.rank + 1)
|
||||
# if (
|
||||
# 0 < self.rank < self.size - 1 and self.start_idx < limit_entry <= self.end_idx):
|
||||
# if self.kind == 'row':
|
||||
# str_rep = self.comm.recv(source=self.rank - 1) + ',' + ','.join(
|
||||
# map(str, self.vec[:(limit_entry - self.start_idx)]))
|
||||
# if self.kind == 'column':
|
||||
# str_rep = self.comm.recv(source=self.rank - 1) + '\n' + '\n'.join(
|
||||
# map(str, self.vec[:(limit_entry - self.start_idx)])) + ']'
|
||||
# self.comm.send(str_rep, dest=self.rank + 1)
|
||||
# if 0 < self.rank < self.size - 1 and limit_entry > self.end_idx:
|
||||
# if self.kind == 'row':
|
||||
# str_rep = self.comm.recv(source=self.rank - 1) + ',' + ','.join(map(str, self.vec))
|
||||
# if self.kind == 'column':
|
||||
# str_rep = self.comm.recv(source=self.rank - 1) + '\n' + '\n'.join(map(str, self.vec))
|
||||
# self.comm.send(str_rep, dest=self.rank + 1)
|
||||
#
|
||||
# # Rank size-1
|
||||
# if self.rank == self.size - 1 and limit_entry <= self.start_idx and self.rank > 1:
|
||||
# str_rep = self.comm.recv(source=self.rank - 1)
|
||||
#
|
||||
# if self.rank == self.size - 1 and limit_entry >= self.start_idx and self.rank > 1:
|
||||
# if self.kind == 'row':
|
||||
# str_rep = self.comm.recv(source=self.rank - 1) + ',' + ','.join(
|
||||
# map(str, self.vec[:(limit_entry - self.start_idx)]))
|
||||
# if self.kind == 'column':
|
||||
# str_rep = self.comm.recv(source=self.rank - 1) + '\n' + '\n'.join(
|
||||
# map(str, self.vec[:(limit_entry - self.start_idx)]))
|
||||
#
|
||||
# str_rep = self.comm.bcast(str_rep, root=self.size - 1)
|
||||
# if self.rank == 0:
|
||||
# return str_rep + ']'
|
||||
#
|
||||
# def norm(self): # Berechnung der 2-Norm / euklidischen Norm
|
||||
# 0
|
||||
# sum_of_squares = 0
|
||||
# if self.rank == 0:
|
||||
# for i in range(0, self.rank_size):
|
||||
# sum_of_squares = sum_of_squares + self.vec[i] ** 2
|
||||
#
|
||||
# if self.size > 1:
|
||||
# self.comm.send(sum_of_squares, dest=self.rank + 1)
|
||||
#
|
||||
# elif self.rank == self.size - 1:
|
||||
# sum_of_squares = self.comm.recv(source=self.rank - 1)
|
||||
# for i in range(0, self.rank_size):
|
||||
# sum_of_squares = sum_of_squares + self.vec[i] ** 2
|
||||
#
|
||||
# else:
|
||||
# sum_of_squares = self.comm.recv(source=self.rank - 1)
|
||||
# for i in range(0, self.rank_size):
|
||||
# sum_of_squares = sum_of_squares + self.vec[i] ** 2
|
||||
# self.comm.send(sum_of_squares, dest=self.rank + 1)
|
||||
#
|
||||
# sum_of_squares = self.comm.bcast(sum_of_squares, root=self.size - 1)
|
||||
# norm = np.sqrt(sum_of_squares)
|
||||
#
|
||||
# return norm
|
||||
#
|
||||
# def normalize(self): # Normalisierung eines Vectors
|
||||
# norm = self.norm()
|
||||
# if norm == 0:
|
||||
# return self
|
||||
# normalized_vec = self / norm
|
||||
# return normalized_vec
|
||||
#
|
||||
#
|
||||
# # Main-Funktion
|
||||
# x = Vector(np.arange(10))
|
||||
# print(x.str(), x.shape())
|
||||
# print(x.vshape[0], x.vshape[1])
|
||||
# minus = -1 * x
|
||||
# _x = -x
|
||||
# print(_x.str())
|
||||
# print(minus.str())
|
||||
# y = Vector(2 * np.arange(10))
|
||||
# print(y.str())
|
||||
# z = x - y
|
||||
# print(z.str())
|
||||
# ae = x + 5
|
||||
# print(ae.str())
|
||||
# o = x * y
|
||||
# print(o.str())
|
||||
#
|
||||
# a = Vector(np.array([[1], [2]]))
|
||||
# b = Vector(np.array([1, 2]))
|
||||
# print(a.shape())
|
||||
# # c = a * b
|
||||
# # print(c.vec)
|
||||
|
Loading…
Reference in New Issue
Block a user