1
0

Merge pull request 'feature/mpi' (#1) from feature/mpi into main

Reviewed-on: #1
This commit is contained in:
Niklas Birk 2024-07-27 15:22:33 +02:00
commit 911a8a69a4
15 changed files with 920 additions and 384 deletions

35
src/cg.py Normal file
View File

@ -0,0 +1,35 @@
from matrix_mpi import MatrixMPI as Matrix
from vector_mpi import VectorMPI as Vector
# from matrix import Matrix
# from vector import Vector
def cg(A: Matrix, x0: Vector, b: Vector, tolerance: float = 1e-3, max_iterations: int = 1_000):
"""
Solves a system of linear equations of the form Ax = b numerically.
:param A: The transformation matrix A
:param x0: A vector to start the algorithm with
:param b: The solution vector of the system of linear equations, the right hand side
:param tolerance: The tolerance at which to stop the algorithm, default is 0.001
:param max_iterations: Maximum number of iterations, default is 1000
"""
iterations = 0
x = x0
r = b - A * x
d = r
while r.norm() >= tolerance and iterations < max_iterations:
z = A * d
alpha = (r.T() * d) / (d.T() * z)
x = x + alpha * d
r = r - alpha * z
beta = -(r.T() * z) / (d.T() * z)
d = r + beta * d
iterations = iterations + 1
return x

View File

25
src/main_cg.py Normal file
View File

@ -0,0 +1,25 @@
from mpi4py import MPI
import cg
from matrix_mpi import MatrixMPI as Matrix
from vector_mpi import VectorMPI as Vector
# from matrix import Matrix
# from vector import Vector
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
n = 1_000
h = 1 / (n - 1)
A = Matrix([-1, 2, -1], structure="tridiagonal", n=n)
x0 = Vector([1] * n)
b = Vector([h**2 * 2] * n)
x = cg.cg(A, x0, b)
# if rank == 0:
# print(f"ranks = {size}: x = {x}")

27
src/main_cg_timeit.py Normal file
View File

@ -0,0 +1,27 @@
from mpi4py import MPI
import sys
import timeit
import cg
from matrix_mpi import MatrixMPI as Matrix
from vector_mpi import VectorMPI as Vector
# from matrix import Matrix
# from vector import Vector
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
n = int(sys.argv[1])
h = 1 / (n - 1)
A = Matrix([-1, 2, -1], structure="tridiagonal", n=n)
x0 = Vector([1] * n)
b = Vector([h**2 * 2] * n)
time = timeit.timeit(lambda: cg.cg(A, x0, b), number=1)
if rank == 0:
print(f"ranks = {size}: time = {time}")

21
src/main_diag_vec.py Normal file
View File

@ -0,0 +1,21 @@
from mpi4py import MPI
from matrix_mpi import MatrixMPI as Matrix
from vector_mpi import VectorMPI as Vector
# from matrix import Matrix
# from vector import Vector
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
n = 10_000
A = Matrix([3], structure="diagonal", offset=0, n=n)
v = Vector([7] * n)
x = A * v
# if rank == 0:
# print(f"ranks = {size}: x = {x}")

View File

@ -0,0 +1,23 @@
from mpi4py import MPI
import sys
import timeit
from matrix_mpi import MatrixMPI as Matrix
from vector_mpi import VectorMPI as Vector
# from matrix import Matrix
# from vector import Vector
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
n = int(sys.argv[1])
A = Matrix([3], structure="diagonal", offset=0, n=n)
v = Vector([7] * n)
time = timeit.timeit(lambda: A * v, number=1)
if rank == 0:
print(f"ranks = {size}: time = {time}s")

22
src/main_matrix_vec.py Normal file
View File

@ -0,0 +1,22 @@
from mpi4py import MPI
from matrix_mpi import MatrixMPI as Matrix
from vector_mpi import VectorMPI as Vector
# from matrix import Matrix
# from vector import Vector
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
n = 10_000
m_data = [(i / k) for i in range(1, n+1) for k in range(1, n+1)]
A = Matrix(m_data, (n, n))
v = Vector(list(range(1, n+1)))
x = A * v
# if rank == 0:
# print(f"ranks = {size}: x = {x}")

View File

@ -0,0 +1,24 @@
from mpi4py import MPI
import sys
import timeit
from matrix_mpi import MatrixMPI as Matrix
from vector_mpi import VectorMPI as Vector
# from matrix import Matrix
# from vector import Vector
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
n = int(sys.argv[1])
m_data = [(i / k) for i in range(1, n+1) for k in range(1, n+1)]
A = Matrix(m_data, (n, n))
v = Vector(list(range(1, n+1)))
time = timeit.timeit(lambda: A * v, number=1)
if rank == 0:
print(f"ranks = {size}: time = {time}s")

View File

@ -22,7 +22,6 @@ class Matrix:
- ``Matrix(list, str, int)``: will create a new square matrix of given size and structure of either \"unity\", \"diagonal\" or \"tridiagonal\"
- ``Matrix(str, int)``: will create a new square matrix of given size and TODO
:param data: Either a list or an numpy ndarray
:param shape: A tuple containing the amount of rows and columns
:param structure: Either \"unity\", \"diagonal\" or \"tridiagonal\"
@ -84,6 +83,30 @@ class Matrix:
"""
return self.__data__
@staticmethod
def flatten_internal(matrices):
flattened_data = []
rows = 0
for matrix in matrices:
flattened_data.extend(matrix.get_data())
rows += matrix.__shape__[0]
cols = matrices[0].__shape__[1]
return flattened_data, (rows, cols)
@staticmethod
def flatten(matrices: list):
"""
Flattens a list of matrices into one bigger matrix.
The columns must match the first ``Matrix`` in the list and the rows can be arbitrarily.
:param matrices: A list of matrices.
:type matrices: list
:return: A ``Matrix`` extended by all matrices in the list.
:rtype: ``Matrix``
"""
flattened_data, shape = Matrix.flatten_internal(matrices)
return Matrix(flattened_data, shape)
def shape(self):
"""
:return: the shape of the matrix, which is ``(rows, columns)``
@ -191,10 +214,19 @@ class Matrix:
else:
raise ValueError("A ``Matrix`` can only be divided ba a number")
def __mul_rowmatrix_matrix__internal__(self, other):
cols = other.__shape__[1]
new_data = [0] * cols
for i in range(cols):
new_data[i] = sum([self.__data__[0][j] * other.__data__[j][i] for j in range(self.__shape__[1])])
return new_data
def __mul_matrix_internal__(self, other):
if self.__shape__[0] == 1:
return self.__mul_rowmatrix_matrix__internal__(other)
rows = self.__shape__[0]
cols = other.__shape__[1]
new_data = [([0] * rows) for _ in range(cols)]
new_data = [([0] * cols) for _ in range(rows)]
for i in range(rows):
for k in range(cols):
new_data[i][k] = sum([self.__data__[i][j] * other.__data__[j][k] for j in range(self.__shape__[1])])
@ -219,7 +251,10 @@ class Matrix:
def __rmul__(self, other):
return self * other
def __abs_sum__(self):
def get_abs_sum_of_squares(self):
return self.__abs_sum_of_squares__()
def __abs_sum_of_squares__(self):
rows = self.__shape__[0]
cols = self.__shape__[1]
abs_sum = 0
@ -258,7 +293,7 @@ class Matrix:
:return: the norm as a number
"""
if f == "frobenius":
norm = math.sqrt(self.__abs_sum__())
norm = math.sqrt(self.__abs_sum_of_squares__())
elif f == "col sum":
norm = max(self.__col_sums__())
elif f == "row sum":

View File

@ -1,3 +1,5 @@
import math
import numpy
from mpi4py import MPI
@ -5,34 +7,161 @@ from matrix import Matrix
class MatrixMPI:
__comm__ = MPI.COMM_WORLD
__size__ = __comm__.Get_size()
__rank__ = __comm__.Get_rank()
__mpi_comm__ = MPI.COMM_WORLD
__mpi_size__ = __mpi_comm__.Get_size()
__mpi_rank__ = __mpi_comm__.Get_rank()
__matrix__: Matrix = None
__data__ = None
__rank_subdata__ = None
__chunk__: list = None
def __init__(self, data=None, shape=None, structure=None, model=None, offset=None, n=None):
self.__matrix__ = Matrix(data=data, shape=shape, structure=structure, model=model, offset=offset, n=n)
"""
Creates a new matrix.
The type of the matrix depends on the signature and arguments.
total_amount_of_rows = self.__matrix__.shape()[0]
chunks = numpy.array_split(list(range(total_amount_of_rows)), self.__size__)
self.__chunk__ = chunks[self.__rank__].tolist()
- ``MatrixMPI(list)``: will create a new matrix with the given data in the list and its shape.
- ``MatrixMPI(numpy.ndarray)``: will create a new matrix with the given data in ndarray and its shape.
- ``MatrixMPI(list, (int,int))``: will create a new nxm matrix with the given rows and columns and data in list.
- ``MatrixMPI(list, str, int, int)``: will create a new square matrix of given size and structure of \"diagonal\"
- ``MatrixMPI(list, str, int)``: will create a new square matrix of given size and structure of either \"unity\", \"diagonal\" or \"tridiagonal\"
- ``MatrixMPI(str, int)``: will create a new square matrix of given size and TODO
def __str__(self):
return str(self.__matrix__)
:param data: Either a list or an numpy ndarray
:param shape: A tuple containing the amount of rows and columns
:param structure: Either \"unity\", \"diagonal\" or \"tridiagonal\"
:param model: TODO
:param offset: Offset to diagonal axis
:param n: Amount of rows of a square matrix or offset in case of diagonal structure
def get_rank_data(self):
:type data: Matrix | list | numpy.ndarray
:type shape: (int, int)
:type structure: str
:type model: str
:type offset: int
:type n: int
:rtype: MatrixMPI
"""
if isinstance(data, Matrix):
self.__data__ = data
else:
self.__data__ = Matrix(data=data, shape=shape, structure=structure, model=model, offset=offset, n=n)
# Calculate how much rows are delegated to the rank
total_amount_of_rows = self.__data__.shape()[0]
chunks = numpy.array_split(list(range(total_amount_of_rows)), self.__mpi_size__)
self.__chunk__ = chunks[self.__mpi_rank__].tolist()
# Store the delegated rows explicitly for calculations
rows = len(self.__chunk__)
cols = self.__matrix__.shape()[1]
return Matrix(self.__matrix__[self.__chunk__], (rows, cols))
cols = self.__data__.shape()[1]
self.__rank_subdata__ = Matrix(self.__data__[self.__chunk__], (rows, cols))
@staticmethod
def of(matrix: Matrix):
return MatrixMPI(matrix)
def shape(self):
return self.__data__.shape()
def get_rank_subdata(self):
"""
Returns only the delegated rows of the rank as ``Matrix``
:return: The delegated rows as ``Matrix``
"""
return self.__rank_subdata__
def get_data(self):
"""
Returns the whole ``Matrix`` that is used internally
:return: The ``Matrix`` that is used internally
"""
return self.__data__
def get_internal_data(self):
"""
Returns the raw data of the internal data structure
:return: The raw data of the internal data structure
"""
return self.__data__.get_data()
def transpose(self):
return self.__matrix__.transpose()
"""
:return: the transpose of the matrix
"""
return MatrixMPI.of(self.__data__.transpose())
def T(self):
"""
Same as ``matrix.transpose()``
:return: see ``matrix.transpose()``
"""
return self.transpose()
def __str__(self):
return str(self.__data__)
mpi_matrix = MatrixMPI(list(range(1, 25)), (12, 2))
print(mpi_matrix.transpose())
def __eq__(self, other):
"""
Return ``self==value``
:param other: The object to compare to; must be either a ``MatrixMPI``, ``Matrix``, a ``list`` or a ``numpy.ndarray``
:return: True if data in the matrix are equal to the given data in other for each component, otherwise False
"""
if isinstance(other, MatrixMPI):
return self.__data__ == other.__data__
else:
return self.__data__ == other
def __neg__(self):
return MatrixMPI.of(Matrix.flatten(self.__mpi_comm__.allgather(-self.__rank_subdata__)))
def __add__(self, other):
if isinstance(other, MatrixMPI):
other = other.__rank_subdata__
return MatrixMPI.of(Matrix.flatten(self.__mpi_comm__.allgather(self.__rank_subdata__ + other)))
def __radd__(self, other):
return self + other
def __sub__(self, other):
return self + (-other)
def __rsub__(self, other):
return -self + other
def __truediv__(self, other):
return MatrixMPI.of(Matrix.flatten(self.__mpi_comm__.allgather(self.__rank_subdata__ / other)))
def __mul__(self, other):
if isinstance(other, MatrixMPI):
other = other.get_data()
return MatrixMPI.of(Matrix.flatten(self.__mpi_comm__.allgather(self.__rank_subdata__ * other)))
def __rmul__(self, other):
return self * other
def norm(self, f: str = "frobenius"):
"""
Calculates the norm of the matrix.
A norm is a positive definit, absolute homogeneous and subadditive function.
For Matrices a norm is also sub-multiplicative.
:param f: The norm to be used, could be either "frobenius", "row sum" or "col sum"
:return: the norm as a number
"""
if f == "frobenius":
return math.sqrt(self.__mpi_comm__.allreduce(self.__rank_subdata__.get_abs_sum_of_squares()))
elif f == "row sum":
return max(self.__mpi_comm__.allgather(self.__rank_subdata__.norm(f)))
return self.__data__.norm(f)
def __getitem__(self, key):
return self.__data__[key]
def __setitem__(self, key, value):
self.__data__[key] = value

View File

@ -24,6 +24,19 @@ class Vector(Matrix):
else:
raise ValueError("data must be a ``list``, a ``numpy.ndarray`` or an integer for dimension")
@staticmethod
def flatten(vectors: list):
"""
Flattens a list of matrices into one bigger matrix.
The columns must match the first ``Matrix`` in the list and the rows can be arbitrarily.
:param vectors: A list of vectors.
:type vectors: list
:return: A ``Vector`` extended by all matrices in the list.
"""
flattened_data, shape = Matrix.flatten_internal(vectors)
return Vector(flattened_data, shape)
def __eq__(self, other):
"""
Return ``self==value``
@ -86,7 +99,7 @@ class Vector(Matrix):
return Vector(self.__mul_vector_same_shape_internal__(other))
elif self.__shape__ == tuple(reversed(other.__shape__)):
if self.__shape__[0] == 1: # Case (_ ... _) * (_\n...\n_) = scalar
return super().__mul_matrix_internal__(other)[0][0]
return super().__mul_matrix_internal__(other)[0]
else: # Case (_\n...\n_) * (_ ... _) = Matrix
new_data, shape = self.__mul_tensor_internal__(other)
return Matrix(new_data, shape)
@ -95,10 +108,19 @@ class Vector(Matrix):
elif isinstance(other, int) or isinstance(other, float):
return Vector(super().__mul_scalar_internal__(other))
else:
raise ValueError("A ``Vector`` can only be multiplied with an ``Vector`` (dot product or tensor),"
raise ValueError("A ``Vector`` can only be multiplied with an ``Vector`` (dot product or tensor), "
"a compatible ``Matrix`` or a scalar")
def __mul_matrix_vector_internal__(self, other):
rows = other.__shape__[0]
new_data = [0] * rows
for i in range(rows):
new_data[i] = sum([other.__data__[i][j] * self.__data__[j][0] for j in range(self.__shape__[0])])
return new_data
def __rmul__(self, other):
if isinstance(other, Matrix):
return Vector(self.__mul_matrix_vector_internal__(other))
return self * other
def __truediv_vector_internal__(self, other):

View File

@ -1,365 +1,84 @@
from mpi4py import MPI
import math
import numpy
from matrix_mpi import MatrixMPI
from vector import Vector
class VectorMPI:
...
class VectorMPI(MatrixMPI):
def __init__(self, data=None, shape=None):
if isinstance(data, Vector):
self.__data__ = data
else:
self.__data__ = Vector(data=data, shape=shape)
# class Vector:
# start_idx = 0 # Nullter Eintrag des Vektors auf dem aktuellen Rang
# end_idx = 0 # Letzer Eintrag des Vektors auf dem aktuellen Rang
# rank_size = 0 # Dimension des Vektors der auf dem aktuellen Rang gespeichert wird
# kind = '' # Art des Vektors, Zeilen oder Spaltenvektor
# vec = np.arange(rank_size)
# vshape = np.arange(2) # Array mit Länge 2, um die Shape des Vektors zu speichern
# dim = 0 # Gesamtdimension des Vektors, Länge des Vektors
#
# comm = MPI.COMM_WORLD
# size = comm.Get_size()
# rank = comm.Get_rank()
#
# # Konstruktor
# def __init__(self, array):
#
# if isinstance(array, np.ndarray):
# form = array.shape
# if len(array) < self.size:
# raise ValueError("ERROR_3: Die Dimension des Vektors ist kleiner als die Anzahl der benutzten Ränge.")
#
# if len(form) > 2:
# raise ValueError("ERROR_2: Falsche Dimension, kann kein 1 x n oder n x 1 Vektor sein.")
# # Array ist Zeilenvektor:
# if len(form) == 1 or (len(form) == 2 and form[0] == 1):
# self.vshape[0] = 1
# self.vshape[1] = len(array) # Shape des Vectors
# self.start_idx = int(self.rank * len(array) / self.size)
# self.end_idx = int(len(array) / self.size + self.rank * len(array) / self.size) - 1
# self.rank_size = (
# self.end_idx - self.start_idx) + 1 # Größe des Teilvektors auf dem akt. Rang: Differenz zw. Start- und Endindex + 1
# self.vec = array[
# self.start_idx: self.end_idx + 1] # Auf jedem Rang werden die Einträge vom Start bis zum Endindex gespeichert
# self.kind = 'row'
# self.dim = len(array)
#
# # Array ist Spaltenvektor
# if len(form) == 2 and form[1] == 1:
# self.vshape[0] = len(array)
# self.vshape[1] = 1
# self.start_idx = int(self.rank * len(array) / self.size)
# self.end_idx = int(len(array) / self.size + self.rank * len(array) / self.size) - 1
# self.rank_size = (
# self.end_idx - self.start_idx) + 1 # Größe des Teilvektors auf dem akt. Rang: Differenz zw. Start- und Endindex + 1
# self.vec = array[
# self.start_idx: self.end_idx + 1] # Auf jedem Rang werden die Einträge vom Start bis zum Endindex gespeichert
# self.kind = 'column'
# self.dim = len(array)
#
# elif isinstance(array, list):
# self.vshape[0] = 1
# self.vshape[1] = len(array)
# self.start_idx = int(self.rank * len(array) / self.size)
# self.end_idx = int(len(array) / self.size + self.rank * len(array) / self.size) - 1
# self.rank_size = (self.end_idx - self.start_idx) + 1
# self.vec = np.array(array[self.start_idx:self.end_idx + 1])
# self.kind = 'row'
# self.dim = len(array)
# else:
# raise ValueError(
# "ERROR_1: Die übergebene Variable ist kein Numpy-Array, Keine Initialisierung der Vector-Klasse möglich.")
#
# def __add__(self, other): # Überschreibung der Addition
# if isinstance(self, Vector) and isinstance(other, Vector):
# Add_Vec = Vector(np.arange(self.dim))
# if self.vshape[0] == other.vshape[0] and self.vshape[1] == other.vshape[1]:
# for i in range(0, self.rank_size):
# Add_Vec.vec[i] = self.vec[i] + other.vec[i]
# else:
# raise ValueError("Die Dimensionen der Vektoren stimmen nicht überein, Addition nicht möglich.")
# elif isinstance(self, Vector) and isinstance(other, (int, float, complex)):
# Add_Vec = Vector(np.arange(self.dim))
# for i in range(0, self.rank_size):
# Add_Vec.vec[i] = self.vec[i] + other
# elif isinstance(self, (int, float, complex)) and isinstance(other, Vector):
# Add_Vec = Vector(np.arange(other.dim))
# for i in range(0, other.rank_size):
# Add_Vec.vec[i] = other.vec[i] + self
# else:
# raise ValueError("Ungeeigneter Datentyp für die Addition mit einem Vektor.")
# return Add_Vec
#
# def __radd__(self, other): # Überschreibung der Addition eines Vektors von rechts
# Vector(np.arange(self.dim))
# if isinstance(self, Vector) and isinstance(other, (int, float, complex)):
# Add_Vec = Vector(np.arange(self.dim))
# for i in range(0, self.rank_size):
# Add_Vec.vec[i] = self.vec[i] + other
# else:
# raise ValueError("Ungeeigneter Datentyp für die Addition mit einem Vektor.")
# return Add_Vec
#
# def __sub__(self, other): # Überschreibung der Subtraktion
# if isinstance(self, Vector) and isinstance(other, Vector):
# Sub_Vec = Vector(np.arange(self.dim))
# if self.vshape[0] == other.vshape[0] and self.vshape[1] == other.vshape[1]:
# for i in range(0, self.rank_size):
# Sub_Vec.vec[i] = self.vec[i] - other.vec[i]
# else:
# raise ValueError("Die Dimension der Vektoren stimmen nicht überein, Subtraktion nicht möglich.")
# elif isinstance(self, Vector) and isinstance(other, (int, float, complex)):
# Sub_Vec = Vector(np.arange(self.dim))
# for i in range(0, self.rank_size):
# Sub_Vec.vec[i] = self.vec[i] - other
# elif isinstance(self, (int, float, complex)) and isinstance(other, Vector):
# Sub_Vec = Vector(np.arange(self.dim))
# for i in range(0, other.rank_size):
# Sub_Vec.vec[i] = other.vec[i] - self
# else:
# raise ValueError("Ungeeigneter Datentyp für die Subtraktion mit einem Vektor.")
# return Sub_Vec
#
# def __rsub__(self, other): # Subtraktion einer Zahl von einem Vektor
# Sub_Vec = Vector(np.arange(self.dim))
# if isinstance(self, Vector) and isinstance(other, (float, int, complex)):
# for i in range(0, self.rank_size):
# Sub_Vec.vec[i] = self.vec[i] - other
# else:
# raise ValueError("Ungeeigneter Datentyp für die Subtraktion von einem Vektor.")
# return Sub_Vec
#
# def __mul__(self, other): # Überschreibung der Multiplikation
# if isinstance(self, Vector) and isinstance(other, Vector):
# Mult_Vec = Vector(np.arange(self.dim))
# if (self.vshape[0] == other.vshape[0] and self.vshape[1] == other.vshape[
# 1]): # Elementweise Multiplikation
# for i in range(0, self.rank_size):
# Mult_Vec.vec[i] = self.vec[i] * other.vec[i]
# elif self.vshape[1] == other.vshape[0] and self.vshape[0] == 1: # Inneres Produkt (Skalarprodukt)
# skal_prod = 0
# for i in range(0, self.rank_size):
# skal_prod = skal_prod + self.vec[i] * other.vec[i]
# return skal_prod
# elif self.vshape[0] == other.vshape[1] and self.vshape[1] == 1:
# raise ValueError("Kann erst implementiert werden, wenn Matrix-Klasse existiert.")
# else:
# raise ValueError("Die Dimensionen der Vektoren stimmen nicht überein, Multiplikation nicht möglich.")
# elif isinstance(self, Vector) and isinstance(other, (int, float, complex)):
# Mult_Vec = Vector(np.arange(self.dim))
# for i in range(0, self.rank_size):
# Mult_Vec.vec[i] = self.vec[i] * other
# elif isinstance(self, (int, float, complex)) and isinstance(other, Vector):
# Mult_Vec = Vector(np.arange(self.dim))
# for i in range(0, other.rank_size):
# Mult_Vec.vec[i] = other.vec[i] * self
# else:
# raise ValueError("Ungeeigneter Datentyp für die Multiplikation mit einem Vektor.")
# return Mult_Vec
#
# def __rmul__(self, other): # Rechtsseitige Multiplikation von einer Zahl an einen Vektor
# Mult_Vec = Vector(np.arange(self.dim))
# if isinstance(self, Vector) and isinstance(other, (int, float, complex)):
# for i in range(0, self.rank_size):
# Mult_Vec.vec[i] = self.vec[i] * other
# else:
# raise ValueError("Ungeeigneter Datentyp für die Multiplikation mit einem Vektor.")
# return Mult_Vec
#
# def __truediv__(self, other):
# Div_Vec = Vector(np.arange(self.dim, dtype=np.double))
# if isinstance(self, Vector) and isinstance(other, Vector):
# if self.vshape[0] == other.vshape[0] and self.vshape[1] == other.vshape[1]:
# for i in range(0, self.rank_size):
# if other.vec[i] == 0:
# raise ValueError("Ein Eintrag des Divisor-Vektors ist 0, Divion nicht möglich.")
# Div_Vec.vec[i] = self.vec[i] / other.vec[i]
# else:
# raise ValueError("Die Dimensionen der Vektoren stimmen nicht überein, Division nicht möglich.")
# elif isinstance(self, (int, float, complex)) and isinstance(other, Vector):
# for i in range(0, other.rank_size):
# if other.vec[i] == 0:
# raise ValueError("Ein Eintrag des Divisor-Vektors ist 0, Divion nicht möglich.")
# Div_Vec.vec[i] = self / other.vec[i]
# elif isinstance(self, Vector) and isinstance(other, (float, int, complex)):
# if other == 0:
# raise ValueError("Division durch Null ist nicht möglich.")
# else:
# for i in range(0, self.rank_size):
# Div_Vec.vec[i] = self.vec[i] / other
# else:
# raise ValueError("ERROR 11: Ungeeigneter Datentyp für die Division mit einem Vektor.")
# return Div_Vec
#
# def __rtruediv__(self, other):
# Div_Vec = Vector(np.arange(self.dim, dtype=np.double))
# if isinstance(self, Vector) and isinstance(other, (float, int, complex)):
# if other == 0:
# raise ValueError("Division durch Null ist nicht möglich.")
# else:
# for i in range(0, self.rank_size):
# Div_Vec.vec[i] = self.vec[i] / other
# else:
# raise ValueError("ERROR 10: Uneignete Datentyp, um einen Vektor durch diesen zu dividieren")
# return Div_Vec
#
# def __neg__(self):
# Neg_Vec = -1 * self
# return Neg_Vec
#
# def shape(self):
# if self.rank == 0:
# return self.vshape
#
# def T(self):
# Transpose = self
# if self.kind == 'row':
# Transpose.kind = 'column'
# else:
# Transpose.kind = 'row'
#
# # Tauschen der Dimensionen
# var_shift = self.vshape[0]
# Transpose.vshape[0] = self.vshape[1]
# Transpose.vshape[1] = var_shift
# return Transpose
#
# def str(self): # Rückgabe des gesamten Vektors als string
# str_rep = ''
#
# if self.rank == 0:
# if self.kind == 'row':
# str_rep = '[' + ','.join(map(str, self.vec))
# if self.kind == 'column':
# str_rep = '[' + '\n'.join(map(str, self.vec))
# if self.size > 1:
# self.comm.send(str_rep, dest=self.rank + 1)
#
# elif self.rank == self.size - 1:
# if self.kind == 'row':
# str_rep = self.comm.recv(source=self.rank - 1) + ',' + ','.join(map(str, self.vec))
# if self.kind == 'column':
# str_rep = self.comm.recv(source=self.rank - 1) + '\n' + '\n'.join(map(str, self.vec))
#
# else:
# if self.kind == 'row':
# str_rep = self.comm.recv(source=self.rank - 1) + ',' + ','.join(map(str, self.vec))
# if self.kind == 'column':
# str_rep = self.comm.recv(source=self.rank - 1) + '\n' + '\n'.join(map(str, self.vec))
# self.comm.send(str_rep, dest=self.rank + 1)
#
# str_rep = self.comm.bcast(str_rep, root=self.size - 1)
# if self.rank == 0:
# return str_rep + ']'
#
# def string(self, limit_entry): # Gibt den Vektor als String zurück bis zum Eintrag limit_entry
# str_rep = ''
#
# if limit_entry > self.vec_size:
# raise ValueError("ERROR_4: Die eingegebene Zahl ist größer, als der größte Index des Vectors.")
#
# # Rank 0
# if self.rank == 0 and limit_entry <= self.end_idx: # Limit_entry befindet sich im Rang 0
# if self.kind == 'row':
# str_rep = '[' + ','.join(map(str, self.vec[:limit_entry]))
# if self.kind == 'column':
# str_rep = '[' + '\n'.join(map(str, self.vec[:limit_entry]))
# if self.size > 1:
# self.comm.send(str_rep, dest=self.rank + 1)
# if self.rank == 0 and limit_entry > self.end_idx: # Limit_entry befindet sich nicht im Rang 0
# if self.kind == 'row':
# str_rep = '[' + ','.join(map(str, self.vec))
# if self.kind == 'column':
# str_rep = '[' + '\n'.join(map(str, self.vec))
# if self.size > 1:
# self.comm.send(str_rep, dest=self.rank + 1)
#
# # Rank im Intervall [1,size-1]
# if (
# 0 < self.rank < self.size - 1 and limit_entry <= self.start_idx): # wenn lim_ent == start_idx, dann wurden bereits alle relevanten Indizes im String gespeichert, da Vector nullinitialisiert ist
# str_rep = self.comm.recv(source=self.rank - 1)
# self.comm.send(str_rep, dest=self.rank + 1)
# if (
# 0 < self.rank < self.size - 1 and self.start_idx < limit_entry <= self.end_idx):
# if self.kind == 'row':
# str_rep = self.comm.recv(source=self.rank - 1) + ',' + ','.join(
# map(str, self.vec[:(limit_entry - self.start_idx)]))
# if self.kind == 'column':
# str_rep = self.comm.recv(source=self.rank - 1) + '\n' + '\n'.join(
# map(str, self.vec[:(limit_entry - self.start_idx)])) + ']'
# self.comm.send(str_rep, dest=self.rank + 1)
# if 0 < self.rank < self.size - 1 and limit_entry > self.end_idx:
# if self.kind == 'row':
# str_rep = self.comm.recv(source=self.rank - 1) + ',' + ','.join(map(str, self.vec))
# if self.kind == 'column':
# str_rep = self.comm.recv(source=self.rank - 1) + '\n' + '\n'.join(map(str, self.vec))
# self.comm.send(str_rep, dest=self.rank + 1)
#
# # Rank size-1
# if self.rank == self.size - 1 and limit_entry <= self.start_idx and self.rank > 1:
# str_rep = self.comm.recv(source=self.rank - 1)
#
# if self.rank == self.size - 1 and limit_entry >= self.start_idx and self.rank > 1:
# if self.kind == 'row':
# str_rep = self.comm.recv(source=self.rank - 1) + ',' + ','.join(
# map(str, self.vec[:(limit_entry - self.start_idx)]))
# if self.kind == 'column':
# str_rep = self.comm.recv(source=self.rank - 1) + '\n' + '\n'.join(
# map(str, self.vec[:(limit_entry - self.start_idx)]))
#
# str_rep = self.comm.bcast(str_rep, root=self.size - 1)
# if self.rank == 0:
# return str_rep + ']'
#
# def norm(self): # Berechnung der 2-Norm / euklidischen Norm
# 0
# sum_of_squares = 0
# if self.rank == 0:
# for i in range(0, self.rank_size):
# sum_of_squares = sum_of_squares + self.vec[i] ** 2
#
# if self.size > 1:
# self.comm.send(sum_of_squares, dest=self.rank + 1)
#
# elif self.rank == self.size - 1:
# sum_of_squares = self.comm.recv(source=self.rank - 1)
# for i in range(0, self.rank_size):
# sum_of_squares = sum_of_squares + self.vec[i] ** 2
#
# else:
# sum_of_squares = self.comm.recv(source=self.rank - 1)
# for i in range(0, self.rank_size):
# sum_of_squares = sum_of_squares + self.vec[i] ** 2
# self.comm.send(sum_of_squares, dest=self.rank + 1)
#
# sum_of_squares = self.comm.bcast(sum_of_squares, root=self.size - 1)
# norm = np.sqrt(sum_of_squares)
#
# return norm
#
# def normalize(self): # Normalisierung eines Vectors
# norm = self.norm()
# if norm == 0:
# return self
# normalized_vec = self / norm
# return normalized_vec
#
#
# # Main-Funktion
# x = Vector(np.arange(10))
# print(x.str(), x.shape())
# print(x.vshape[0], x.vshape[1])
# minus = -1 * x
# _x = -x
# print(_x.str())
# print(minus.str())
# y = Vector(2 * np.arange(10))
# print(y.str())
# z = x - y
# print(z.str())
# ae = x + 5
# print(ae.str())
# o = x * y
# print(o.str())
#
# a = Vector(np.array([[1], [2]]))
# b = Vector(np.array([1, 2]))
# print(a.shape())
# # c = a * b
# # print(c.vec)
# Calculate how much rows are delegated to the rank
total_amount_of_rows = self.__data__.shape()[0]
chunks = numpy.array_split(list(range(total_amount_of_rows)), self.__mpi_size__)
self.__chunk__ = chunks[self.__mpi_rank__].tolist()
# Store the delegated rows explicitly for calculations
self.__rank_subdata__ = Vector(self.__data__[self.__chunk__])
@staticmethod
def of(vector: Vector):
return VectorMPI(vector)
def transpose(self):
"""
:return: the transpose of the vector
"""
return VectorMPI.of(self.__data__.transpose())
def T(self):
return self.transpose()
def __str__(self):
return str(self.__data__)
def __neg__(self):
return VectorMPI.of(-self.__data__)
def __add__(self, other):
if isinstance(other, VectorMPI):
other = other.__rank_subdata__
return VectorMPI.of(Vector.flatten(self.__mpi_comm__.allgather(self.__rank_subdata__ + other)))
def __mul__(self, other):
if isinstance(other, VectorMPI):
other = other.__data__
if isinstance(other, int) or isinstance(other, float):
result = Vector.flatten(self.__mpi_comm__.allgather(self.__rank_subdata__ * other))
else:
result = self.__data__ * other
return VectorMPI.of(result) if isinstance(result, Vector) else result
def __rmul__(self, other):
if isinstance(other, MatrixMPI):
return VectorMPI.of(Vector.flatten(self.__mpi_comm__.allgather(other.get_rank_subdata() * self.get_data())))
return self * other
def __truediv__(self, other):
if isinstance(other, VectorMPI):
other = other.__rank_subdata__
return VectorMPI.of(Vector.flatten(self.__mpi_comm__.allgather(self.__rank_subdata__ / other)))
def norm(self, **kwargs):
"""
Computes the 2-norm of the vector which is the Frobenius-Norm of a nx1 matrix.
:param kwargs: ignored
:return: the 2-norm of the vector
"""
return math.sqrt(self.__mpi_comm__.allreduce(self.__rank_subdata__.get_abs_sum_of_squares()))
def normalize(self):
"""
A normalized vector has the length (norm) 1.
To achieve that the vector is divided by the norm of itself.
:return: the normalized vector
"""
return VectorMPI.of(Vector.flatten(self.__mpi_comm__.allgather(self.__rank_subdata__ / self.norm())))

View File

@ -230,6 +230,51 @@ class TestMatrix(TestCase):
self.assertEqual(expected, actual)
def test_should_mul_matrices_4(self):
m1 = Matrix([1] * 6, (2, 3))
m2 = Matrix([1] * 15, (3, 5))
actual = m1 * m2
expected = Matrix([3] * 10, (2, 5))
self.assertEqual(expected, actual)
def test_should_mul_matrices_5(self):
m1 = Matrix([1] * 15, (3, 5))
m2 = Matrix([1] * 20, (5, 4))
actual = m1 * m2
expected = Matrix([5] * 12, (3, 4))
self.assertEqual(expected, actual)
def test_should_mul_matrices_6(self):
m1 = Matrix([1] * 15, (5, 3))
m2 = Matrix([1] * 12, (3, 4))
actual = m1 * m2
expected = Matrix([3] * 20, (5, 4))
self.assertEqual(expected, actual)
def test_should_mul_matrices_7(self):
m1 = Matrix(list(range(1, 21)), (4, 5))
m2 = Matrix(list(range(1, 16)), (5, 3))
actual = m1 * m2
expected = Matrix([135, 150, 165, 310, 350, 390, 485, 550, 615, 660, 750, 840], (4, 3))
self.assertEqual(expected, actual)
def test_should_mul_vector_matrix(self):
m1 = Matrix([1, 2, 3], (1, 3))
m2 = Matrix([6, 5, 4, 3, 2, 1], (3, 2))
actual = m1 * m2
expected = Matrix([20, 14], (1, 2))
self.assertEqual(expected, actual)
def test_should_raise_shape_missmatch_error_while_multiplying_matrices(self):
m1 = Matrix([1, 2], (2, 1))
m2 = Matrix([3, 4], (2, 1))
@ -378,3 +423,12 @@ class TestMatrix(TestCase):
expected = Matrix([1, 2, 3, 4, 5, 60, 70, 8, 9, 100, 110, 12, 13, 14, 15, 16], (4, 4))
self.assertEqual(expected, actual)
def test_should_flatten_list_of_matrices(self):
m1 = Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9], (3, 3))
m2 = Matrix([1, 2, 3, 4, 5, 6], (2, 3))
actual = m1.flatten([m1, m2])
expected = Matrix([1, 2, 3, 4, 5, 6, 7, 8, 9, 1, 2, 3, 4, 5, 6], (5, 3))
self.assertEqual(expected, actual)

381
test/test_parallel.py Normal file
View File

@ -0,0 +1,381 @@
import numpy as np
from mpi4py import MPI
from matrix_mpi import MatrixMPI
from vector_mpi import VectorMPI
np.random.seed(0)
###############
# Setting up MPI
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
for i0 in range(size):
if i0 == rank:
print(f"Hello from rank {i0} of size {size}!")
comm.Barrier()
# Testing the vector class
comm.Barrier()
if rank == 0:
print("\n\nTesting the vector class --------------(output only from rank 0)---------------------\n\n")
###############
### 1a Initialization
if rank == 0:
print("Start 1a initialization")
# from list
n_x1 = 10
x1_list = [i0 for i0 in
range(n_x1)] # must work for 4 ranks, too, so even if entries are not evenly distributable between ranks
vec_x1 = VectorMPI(x1_list)
# from numpy array
n_x2 = 10000
x2_list = np.random.uniform(0, 1, n_x2)
vec_x2 = VectorMPI(x2_list)
if rank == 0:
print("End 1a\n")
comm.Barrier()
### 1b __str__ function, string representation
if rank == 0:
print("Start 1b string representation")
vec_x1_str = str(vec_x1)
vec_x2_str = str(vec_x2)
if rank == 0:
print(f"vec_x1 values: {vec_x1_str}")
print(f"vec_x2 values: {vec_x2_str}")
print("End 1b\n")
comm.Barrier()
### 1c shape and transpose
if rank == 0:
print("Start 1c shape and transpose")
# shape property of the vector
vec_x1_shape = vec_x1.shape()
vec_x2_T_shape = vec_x2.T().shape()
vec_x2_T_T_shape = vec_x2.T().T().shape()
if rank == 0:
print(f"vec_x1 has shape {vec_x1_shape} | must be ({n_x1},1)") # Hint: numpy.reshape
# transposition (property) of the vector, only "cosmetic" change
print(f"vec_x2.T() has shape {vec_x2_T_shape} | must be (1,{n_x2})")
print(f"vec_x2.T().T() has shape {vec_x2_T_T_shape} | must be ({n_x2},1)")
print("End 1c\n")
comm.Barrier()
### 1d addition and subtraction
if rank == 0:
print("Start 1d addition and subtraction ")
# initialization
n_a = 10
n_b = 10
a_list = [i0 for i0 in range(n_a)]
b_list = [1 / (i0 + 1) for i0 in range(n_b)]
a = VectorMPI(a_list)
b = VectorMPI(b_list)
# computation
x = a + b
y = a - b
numpy_x_compare_norm = (x - VectorMPI(np.array(a_list) + np.array(b_list))).norm()
numpy_y_compare_norm = (y - VectorMPI(np.array(a_list) - np.array(b_list))).norm()
if rank == 0:
print(f"norm(a + b - numpy) = {numpy_x_compare_norm} | must be < 1e-8")
print(f"norm(a - b - numpy) = {numpy_x_compare_norm} | must be < 1e-8")
try:
x_false = a + b.T()
except ValueError as e:
if rank == 0:
print("The correct result is this error: " + str(e))
else:
if rank == 0:
print("ERROR: It is required to raise a system error, e. g., ValueError, since dimensions mismatch!")
try:
x_false = a - b.T()
except ValueError as e:
if rank == 0:
print("The correct result is this error: " + str(e))
else:
if rank == 0:
print("ERROR:It is required to raise a system error, e. g., ValueError, since dimensions mismatch!")
if rank == 0:
print("End 1d\n")
comm.Barrier()
### 1e multiplication
if rank == 0:
print("Start 1e multiplication")
# initialization
n_a = 10
n_b = 10
a_list = [i0 for i0 in range(n_a)]
b_list = [1 / (i0 + 1) for i0 in range(n_b)]
a = VectorMPI(a_list)
b = VectorMPI(b_list)
# computation with vectors
x = a.T() * b # scalar
y = a * b # vector
numpy_x_compare_norm = np.linalg.norm(x - np.sum(np.array(a_list) * np.array(b_list)))
numpy_y_compare_norm = (y - VectorMPI(np.array(a_list) * np.array(b_list))).norm()
# numpy_z_compare_norm = (z - MatrixMPI(comm,np.outer(np.array(a_list),np.array(b_list)))).norm()
if rank == 0:
print(f"norm(a.T() * b - numpy) = {numpy_x_compare_norm} | must be < 1e-8")
print(f"norm(a * b - numpy) = {numpy_y_compare_norm} | must be < 1e-8")
# print(f"norm(b * a.T() - numpy) = \n{numpy_z_compare_norm} | must be 1e-8")
# computation with scalars
x = a * 5
y = 0.1 * b.T()
numpy_x_compare_norm = (x - VectorMPI(np.array(a_list) * 5)).norm()
numpy_y_compare_norm = (y - VectorMPI(np.array(b_list) * 0.1).T()).norm()
if rank == 0:
print(f"norm(a * 5 - numpy) = {numpy_x_compare_norm} | must be < 1e-8")
print(f"norm(0.1 * b.T() - numpy) = {numpy_y_compare_norm} | must be < 1e-8")
print("End 1e\n")
comm.Barrier()
### 1f division
if rank == 0:
print("Start 1f division")
# initialization
n_a = 10
n_b = 10
a_list = [i0 for i0 in range(n_a)]
b_list = [1 / (i0 + 1) for i0 in range(n_b)]
a = VectorMPI(a_list)
b = VectorMPI(b_list)
# computation with vectors
x = a / b
y = a / 5
numpy_x_compare_norm = (x - VectorMPI(np.array(a_list) / np.array(b_list))).norm()
numpy_y_compare_norm = (y - VectorMPI(np.array(a_list) / 5)).norm()
if rank == 0:
print(f"norm(a / b - numpy) = {numpy_x_compare_norm} | must be < 1e-8")
print(f"norm(a / 5 - numpy) = {numpy_y_compare_norm} | must be < 1e-8")
print("End 1f\n")
comm.Barrier()
### 1g norm
if rank == 0:
print("Start 1g norm")
# initialization
a_list = [1 / (i0 + 1) for i0 in range(10)]
a = VectorMPI(a_list)
# computation
a_norm = a.norm()
a_normalized = a.normalize()
a_normalized_str = str(a_normalized)
numpy_comparison_norm = (a_normalized - VectorMPI(np.array(a_list) / np.linalg.norm(a_list))).norm()
if rank == 0:
print(f"a_norm = {a_norm} | must be {np.linalg.norm(a_list)}")
print(f"norm(a_normalize-np.a_normalize) = {numpy_comparison_norm} | must be < 1e-8")
print("End 1g\n")
comm.Barrier()
### 1h negation
if rank == 0:
print("Start 1h negation")
# initialization
a_list = [1 / (i0 + 1) for i0 in range(10)]
a = VectorMPI(a_list)
# computation
x = -a
x_str = str(x)
if rank == 0:
print(f"-a = {x_str} | must be {-np.array(a_list)}")
print("End 1h\n")
comm.Barrier()
### 1i manipulation
if rank == 0:
print("Start 1i manipulation")
# initialization
n_a = 10
a_list = [1 / (i0 + 1) for i0 in range(n_a)]
a = VectorMPI(a_list)
a_idx = [1, 2, 9, 7, 8]
a_values = a[a_idx]
if rank == 0:
print(
f"a[{str(a_idx)}] = {str(a_values)} | must be {np.array(a_list).reshape(n_a, 1)[np.array(a_idx)].reshape(len(a_idx), )}")
a[a_idx] = [-1, -1, -1, -1, -1]
a_str = str(a)
np_a = np.array(a_list)
np_a[a_idx] = [-1, -1, -1, -1, -1]
if rank == 0:
print(f"a = {a_str} | must be {np_a}")
print("End 1i\n")
comm.Barrier()
###############
# Testing the matrix class
comm.Barrier()
if rank == 0:
print("\n\nTesting the matrix class -----------------------------------\n\n")
###############
### 2a Initialization
if rank == 0:
print("Start 2a initialization")
n_a1 = 10
n_a2 = 5
a_list = np.array([[(i0 + 1) * (i1 + 1) for i0 in range(n_a1)] for i1 in range(n_a2)])
A = MatrixMPI(a_list)
B = MatrixMPI(structure="tridiagonal", data=[-1, 2, -1], n=12)
c_list = [i0 for i0 in range(n_a1 * n_a1)]
C = MatrixMPI(c_list, shape=(n_a1, n_a1))
D = MatrixMPI(structure="tridiagonal", data=[-1, 2, -1], n=50)
# D = MatrixMPI(model="sheet1ex1", n=50)
if rank == 0:
print("End 2a\n")
comm.Barrier()
### 2b __str__ function, string representation
if rank == 0:
print("Start 2b string representation")
# print(B.__str__(full = True))
A_str = str(A)
B_str = str(B)
C_str = str(C)
D_str = str(D)
if rank == 0:
print(f"Matrix A (numbers):\n{A_str}")
print(f"Matrix B (tridiagonal):\n{B_str}")
print(f"Matrix C (list of numbers):\n{C_str}")
print(f"Matrix D (sheet1ex1):\n{D_str}")
print("End 2b\n")
comm.Barrier()
### 2c shape and transpose
if rank == 0:
print("Start 2c shape and transpose")
# Initialization
A_shape = A.shape()
A_T_shape = A.T().shape()
A_T_T_shape = A.T().T().shape()
if rank == 0:
print(f"A has shape {A_shape} | must be {np.array(a_list).shape}")
print(f"A.T() has shape {A_T_shape} | must be {np.array(a_list).T.shape}")
print(f"A.T().T() has shape {A_T_T_shape} | must be {np.array(a_list).T.T.shape}")
print("End 2c\n")
comm.Barrier()
# ### DEBUG norms ###
# mat = np.array([[(i0+1)*(i1+1) for i0 in range(10)] for i1 in range(5)])
# local_max_each_row = np.amax(np.abs(mat),axis=1)
# if rank == 0:
# print(f"Matrix\n{str(mat)}\nlocal max each row {str(local_max_each_row)}")
# # frobenius norm
# A = MatrixMPI(comm,mat)
# a_norm_fro = A.norm("frobenius")
# if rank == 0:
# print(f"A.norm('frobenius') = {a_norm_fro} | must be {np.linalg.norm(np.array([[(i0+1)*(i1+1) for i0 in range(10)] for i1 in range(5)]),'fro')}")
# # row sum norm
# a_norm_row = A.norm("row sum")
# if rank == 0:
# print(f"A.norm('row sum') = {a_norm_row} | must be {np.max(local_max_each_row)}")
# # col sum norm
### 2d addition and subtraction
if rank == 0:
print("Start 2d addition and subtraction ")
# Initialization
n = 10
A = MatrixMPI(structure="diagonal", data=[3], offset=0, n=n)
A21 = MatrixMPI(structure="diagonal", data=[-1], offset=-1, n=n)
A12 = MatrixMPI(structure="diagonal", data=[-1], offset=+1, n=n)
B = MatrixMPI(structure="diagonal", data=[1], offset=0, n=n)
# computation
C = A + A21 + A12 - B
D = C - MatrixMPI(structure='tridiagonal', data=[-1, 2, -1], n=n)
d_norm = D.norm()
A_str = str(5 + A - 3)
if rank == 0:
print(f"norm(A + A21 + A12 - B - tridiag) = {d_norm} | must be < 1e-8")
print(f"5+A-3 = \n{A_str}")
print("End 2d\n")
comm.Barrier()
### 2e multiplication
if rank == 0:
print("Start 2e multiplication")
# initialization
n = 10
a_mat = np.array([[(i0 + 1) / (i1 + 1) for i1 in range(8)] for i0 in range(n)])
b_mat = np.array([[(i0 + 1) / (i1 + 1) for i1 in range(n)] for i0 in range(8)])
c_mat = np.array([[(i0 + 1) / (i1 + 1) for i1 in range(n)] for i0 in range(n)])
d_mat = np.array([[(i0 + 1) / (i1 + 1) for i1 in range(17)] for i0 in range(n)])
A = MatrixMPI(a_mat)
B = MatrixMPI(b_mat)
C = MatrixMPI(c_mat)
D = MatrixMPI(d_mat)
x_vec = np.array([i0 + 1 for i0 in range(n)])
y_vec = np.array([n * (i0 + 1) for i0 in range(n)])
x = VectorMPI(x_vec)
y = VectorMPI(y_vec)
# computation matrix scalar
norm5 = (5 * A - MatrixMPI(5 * np.array(a_mat))).norm()
# computation matrix vector
norm6 = (C * x - VectorMPI(np.array(c_mat) @ np.array(x_vec))).norm()
norm7 = (D.T() * x - VectorMPI(np.array(d_mat).T @ np.array(x_vec))).norm()
y_shape = (D.T() * x).shape()
if rank == 0:
print(f"Norm of (5*A - np.(5*A)) is {norm5} | must be < 1e-8")
print(f"Norm of (C*x - np.(C*x)) is {norm6} | must be < 1e-8")
print(f"Norm of (D.T*x - np.(D.T*x)) is {norm7} | must be < 1e-8 | shape(D.T*x) is {y_shape} | must be (17,1)")
# computation matrix multiplication
A_str = str(A)
B_str = str(B)
if rank == 0:
print(f"DEBUG: A\n{A_str}\nDEBUG: B\n{B_str}")
norm1 = (A * B - MatrixMPI(np.array(a_mat) @ np.array(b_mat))).norm()
norm2 = (A.T() * A - MatrixMPI(np.array(a_mat).T @ np.array(a_mat))).norm()
norm3 = (A * A.T() - MatrixMPI(np.array(a_mat) @ np.array(a_mat).T)).norm()
norm4 = (B.T() * A.T() - MatrixMPI(np.array(b_mat).T @ np.array(a_mat).T)).norm()
if rank == 0:
print(f"Norm of (A*B - np.(A*B)) is {norm1} | must be < 1e-8")
print(f"Norm of (A.T()*A - np(A.T()*A)) is {norm2} | must be < 1e-8")
print(f"Norm of (A*A.T() - np(A*A.T())) is {norm3} | must be < 1e-8")
print(f"Norm of (B.T()*A.T() - np.(B.T()*A.T())) is {norm4} | must be < 1e-8")
print("End 2e\n")
comm.Barrier()
### 2f division
if rank == 0:
print("Start 2f division")
# initialization
A = MatrixMPI(a_mat)
# computation
print(f"Norm of (A/5 - np.(A/5)) is {(A / 5 - MatrixMPI(np.array(a_mat) / 5)).norm()} | must be < 1e-8")
if rank == 0:
print("End 2f\n")
comm.Barrier()
### 2g norm
if rank == 0:
print("Start 2g norm")
A = MatrixMPI(structure="tridiagonal", n=50, data=[-1, 2, -1])
print(f"Frobenius norm of tridiagonal matrix: {A.norm('frobenius')} | must be 17.263")
print(f"Row sum norm of tridiagonal matrix: {A.norm('row sum')} | must be 4")
print(f"Col sum norm of tridiagonal matrix: {A.norm('col sum')} | must be 4")
if rank == 0:
print("End 2g\n")
comm.Barrier()
### 2h negation
if rank == 0:
print("Start 2h negation")
A = MatrixMPI(structure="tridiagonal", n=50, data=[-1, 2, 1])
print(f"Norm of (A + (-A)) is {(A + (-A)).norm('frobenius')} | must be < 1e-8")
if rank == 0:
print("End 2h\n")
comm.Barrier()
### 2i manipulation
if rank == 0:
print("Start 2i manipulation")
A = MatrixMPI(structure="tridiagonal", n=10, data=[-1, 2, 1])
A[1, 1] = 4
A[[1, 2, 3], 2] = [-5, -10, 100]
print(str(A))
if rank == 0:
print("End 2i\n")
comm.Barrier()

View File

@ -1,5 +1,6 @@
from unittest import TestCase
from matrix import Matrix
from vector import Vector
@ -169,6 +170,24 @@ class TestVector(TestCase):
self.assertEqual(expected, actual)
def test_should_mul_matrix_vector(self):
m = Matrix([1, 2, 3, 4, 5, 6], (2, 3))
v = Vector([1, 2, 3])
expected = Vector([14, 32])
actual = m * v
self.assertEqual(expected, actual)
def test_should_mul_matrix_vector_2(self):
m = Matrix([1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4], (3, 4))
v = Vector([1, 2, 3, 4])
expected = Vector([30, 30, 30])
actual = m * v
self.assertEqual(expected, actual)
def test_should_raise_value_missmatch_error_while_mul_vectors(self):
v1 = Vector([1, 2])
v2 = '0'