Reformat constructor of class Matrix in matrix.py to match to non-None values instead of instance checking;
More implementation of operators in class Matrix
This commit is contained in:
parent
71fa91644e
commit
b9c03b5d5f
@ -33,18 +33,11 @@ class Matrix:
|
|||||||
|
|
||||||
:rtype: Matrix
|
:rtype: Matrix
|
||||||
"""
|
"""
|
||||||
if isinstance(data, numpy.ndarray):
|
# Case Matrix(str, int)
|
||||||
try:
|
if n is not None and model is not None:
|
||||||
data.shape[1]
|
... # TODO: what shall one do here?
|
||||||
except IndexError:
|
# Case: Matrix(list, str, int)
|
||||||
self.__shape__ = (data.shape[0], 1)
|
elif n is not None and structure is not None and data is not None:
|
||||||
else:
|
|
||||||
self.__shape__ = data.shape
|
|
||||||
self.__data__ = data
|
|
||||||
elif isinstance(data, list) and isinstance(shape, tuple):
|
|
||||||
self.__shape__ = shape
|
|
||||||
self.__data__ = numpy.array(data).reshape(shape)
|
|
||||||
elif isinstance(data, list) and isinstance(structure, str) and isinstance(n, int):
|
|
||||||
if structure == "unity":
|
if structure == "unity":
|
||||||
... # TODO: what does it mean?
|
... # TODO: what does it mean?
|
||||||
elif structure == "diagonal":
|
elif structure == "diagonal":
|
||||||
@ -57,8 +50,19 @@ class Matrix:
|
|||||||
tridiag = numpy.diag([data[0]] * (n-1), -1) + numpy.diag([data[1]] * n, 0) + numpy.diag([data[2]] * (n-1), 1)
|
tridiag = numpy.diag([data[0]] * (n-1), -1) + numpy.diag([data[1]] * n, 0) + numpy.diag([data[2]] * (n-1), 1)
|
||||||
self.__data__ = tridiag
|
self.__data__ = tridiag
|
||||||
self.__shape__ = tridiag.shape
|
self.__shape__ = tridiag.shape
|
||||||
elif isinstance(model, str) and isinstance(n, int):
|
# Case: Matrix(list, str, int)
|
||||||
... # TODO: what shall one do here?
|
elif shape is not None and data is not None:
|
||||||
|
self.__shape__ = shape
|
||||||
|
self.__data__ = numpy.array(data).reshape(shape)
|
||||||
|
# Case: Matrix(numpy.ndarray)
|
||||||
|
elif data is not None:
|
||||||
|
try:
|
||||||
|
data.shape[1]
|
||||||
|
except IndexError:
|
||||||
|
self.__shape__ = (data.shape[0], 1)
|
||||||
|
else:
|
||||||
|
self.__shape__ = data.shape
|
||||||
|
self.__data__ = data
|
||||||
else:
|
else:
|
||||||
raise ValueError("Only following signatures are allowed: (numpy.ndarray), (list, tuple), (list, str, int), (str, int)")
|
raise ValueError("Only following signatures are allowed: (numpy.ndarray), (list, tuple), (list, str, int), (str, int)")
|
||||||
|
|
||||||
@ -85,16 +89,53 @@ class Matrix:
|
|||||||
Return ``self==value``
|
Return ``self==value``
|
||||||
|
|
||||||
:param other: The object to compare to; must be either a ``Matrix``, a ``list`` or a ``numpy.ndarray``
|
:param other: The object to compare to; must be either a ``Matrix``, a ``list`` or a ``numpy.ndarray``
|
||||||
:return: True if data in the matrix is totally equal to the given data in other, otherwise False
|
:return: True if data in the matrix are equal to the given data in other for each component, otherwise False
|
||||||
"""
|
"""
|
||||||
if isinstance(other, Matrix):
|
if isinstance(other, Matrix):
|
||||||
return (self.__data__ == other.__data__).all()
|
to_compare = other.__data__
|
||||||
elif isinstance(other, list):
|
elif isinstance(other, list):
|
||||||
return (self.__data__ == numpy.array(other)).all()
|
to_compare = numpy.array(other)
|
||||||
elif isinstance(other, numpy.ndarray):
|
elif isinstance(other, numpy.ndarray):
|
||||||
return (self.__data__ == other).all()
|
to_compare = other
|
||||||
else:
|
else:
|
||||||
raise ValueError("Matrix type is not comparable to type of given ``other``")
|
raise ValueError("Matrix type is not comparable to type of given ``other``")
|
||||||
|
return (self.__data__ == to_compare).all()
|
||||||
|
|
||||||
def __str__(self):
|
def __str__(self):
|
||||||
return str(self.__data__)
|
return str(self.__data__)
|
||||||
|
|
||||||
|
def __neg__(self):
|
||||||
|
return Matrix(-self.__data__)
|
||||||
|
|
||||||
|
def __add__(self, other):
|
||||||
|
if isinstance(other, Matrix):
|
||||||
|
if self.__shape__ != other.__shape__:
|
||||||
|
raise ValueError("The shape of the operands must be the same")
|
||||||
|
return self.__data__ + other.__data__
|
||||||
|
elif isinstance(other, int) or isinstance(other, float):
|
||||||
|
return self.__data__ + other
|
||||||
|
else:
|
||||||
|
raise ValueError("Only a number or another ``Matrix`` can be added to a ``Matrix``")
|
||||||
|
|
||||||
|
def __radd__(self, other):
|
||||||
|
return self + other
|
||||||
|
|
||||||
|
def __sub__(self, other):
|
||||||
|
return self + (-other)
|
||||||
|
|
||||||
|
def __rsub__(self, other):
|
||||||
|
return -self + other
|
||||||
|
|
||||||
|
def __truediv__(self, other):
|
||||||
|
if isinstance(other, int) or isinstance(other, float):
|
||||||
|
return self.__data__ / other
|
||||||
|
else:
|
||||||
|
raise ValueError("A ``Matrix`` can only be divided ba a number")
|
||||||
|
|
||||||
|
def __mul__(self, other):
|
||||||
|
if isinstance(other, Matrix):
|
||||||
|
if self.__shape__[1] != other.__shape__[0]:
|
||||||
|
raise ValueError("The amount of columns of the first operand must match the amount of rows of the second operand")
|
||||||
|
return Matrix(self.__data__ * other.__data__)
|
||||||
|
elif isinstance(other, int) or isinstance(other, float):
|
||||||
|
...
|
||||||
|
@ -86,6 +86,18 @@ class TestMatrix(TestCase):
|
|||||||
expected = [[1, -1, 0, 0], [-1, 1, -1, 0], [0, -1, 1, -1], [0, 0, -1, 1]]
|
expected = [[1, -1, 0, 0], [-1, 1, -1, 0], [0, -1, 1, -1], [0, 0, -1, 1]]
|
||||||
self.assertEqual(expected, actual)
|
self.assertEqual(expected, actual)
|
||||||
|
|
||||||
|
def test_matrices_should_be_equal(self):
|
||||||
|
m1 = Matrix([1, 2, 3, 4], (2, 2))
|
||||||
|
m2 = Matrix([1, 2, 3, 4], (2, 2))
|
||||||
|
|
||||||
|
self.assertEqual(m1, m2)
|
||||||
|
|
||||||
|
def test_matrices_should_not_be_equal(self):
|
||||||
|
m1 = Matrix([1, 2, 3, 4], (2, 2))
|
||||||
|
m2 = Matrix([1, 2, 3, 3], (2, 2))
|
||||||
|
|
||||||
|
self.assertNotEqual(m1, m2)
|
||||||
|
|
||||||
def test_should_transpose_matrix(self):
|
def test_should_transpose_matrix(self):
|
||||||
data = [1, 2, 3, 4, 5, 6, 7, 8, 9]
|
data = [1, 2, 3, 4, 5, 6, 7, 8, 9]
|
||||||
actual = Matrix(data, (3, 3))
|
actual = Matrix(data, (3, 3))
|
||||||
@ -93,3 +105,116 @@ class TestMatrix(TestCase):
|
|||||||
actual = actual.transpose()
|
actual = actual.transpose()
|
||||||
expected = [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
|
expected = [[1, 4, 7], [2, 5, 8], [3, 6, 9]]
|
||||||
self.assertEqual(expected, actual)
|
self.assertEqual(expected, actual)
|
||||||
|
|
||||||
|
def test_should_negate_matrix(self):
|
||||||
|
m = Matrix([1, 2, 3, 4], (2, 2))
|
||||||
|
|
||||||
|
actual = -m
|
||||||
|
expected = Matrix([-1, -2, -3, -4], (2, 2))
|
||||||
|
|
||||||
|
self.assertEqual(expected, actual)
|
||||||
|
|
||||||
|
def test_should_add_two_matrices(self):
|
||||||
|
m1 = Matrix([1, 2, 3, 4], (2, 2))
|
||||||
|
m2 = Matrix([4, 3, 2, 1], (2, 2))
|
||||||
|
|
||||||
|
actual = m1 + m2
|
||||||
|
expected = Matrix([5, 5, 5, 5], (2, 2))
|
||||||
|
|
||||||
|
self.assertEqual(expected, actual)
|
||||||
|
|
||||||
|
def test_should_add_scalar_to_matrix(self):
|
||||||
|
m = Matrix([1, 2, 3, 4], (2, 2))
|
||||||
|
s = 5
|
||||||
|
|
||||||
|
actual = m + s
|
||||||
|
expected = Matrix([6, 7, 8, 9], (2, 2))
|
||||||
|
|
||||||
|
self.assertEqual(expected, actual)
|
||||||
|
|
||||||
|
def test_should_radd_scalar_to_matrix(self):
|
||||||
|
m = Matrix([1, 2, 3, 4], (2, 2))
|
||||||
|
s = 5
|
||||||
|
|
||||||
|
actual = s + m
|
||||||
|
expected = Matrix([6, 7, 8, 9], (2, 2))
|
||||||
|
|
||||||
|
self.assertEqual(expected, actual)
|
||||||
|
|
||||||
|
def test_should_raise_shape_missmatch_error_while_adding_vectors(self):
|
||||||
|
m1 = Matrix([1, 2, 3, 4], (2, 2))
|
||||||
|
m2 = Matrix([1, 2], (2, 1))
|
||||||
|
|
||||||
|
self.assertRaises(ValueError, lambda: m1 + m2)
|
||||||
|
|
||||||
|
def test_should_raise_value_missmatch_error_while_adding_vectors(self):
|
||||||
|
m = Matrix([1, 2, 3, 4], (2, 2))
|
||||||
|
o = ""
|
||||||
|
|
||||||
|
self.assertRaises(ValueError, lambda: m + o)
|
||||||
|
|
||||||
|
def test_should_sub_two_matrices(self):
|
||||||
|
m1 = Matrix([1, 2, 3, 4], (2, 2))
|
||||||
|
m2 = Matrix([4, 3, 2, 1], (2, 2))
|
||||||
|
|
||||||
|
actual = m1 - m2
|
||||||
|
expected = Matrix([-3, -1, 1, 3], (2, 2))
|
||||||
|
|
||||||
|
self.assertEqual(expected, actual)
|
||||||
|
|
||||||
|
def test_should_sub_scalar_of_matrix(self):
|
||||||
|
m = Matrix([1, 2, 3, 4], (2, 2))
|
||||||
|
s = 5
|
||||||
|
|
||||||
|
actual = m - s
|
||||||
|
expected = Matrix([-4, -3, -2, -1], (2, 2))
|
||||||
|
|
||||||
|
self.assertEqual(expected, actual)
|
||||||
|
|
||||||
|
def test_should_rsub_scalar_of_matrix(self):
|
||||||
|
m = Matrix([1, 2, 3, 4], (2, 2))
|
||||||
|
s = 5
|
||||||
|
|
||||||
|
actual = s - m
|
||||||
|
expected = Matrix([4, 3, 2, 1], (2, 2))
|
||||||
|
|
||||||
|
self.assertEqual(expected, actual)
|
||||||
|
|
||||||
|
def test_should_div_matrix_by_scalar(self):
|
||||||
|
m = Matrix([5, 10, 15, 20], (2, 2))
|
||||||
|
s = 5
|
||||||
|
|
||||||
|
actual = m / s
|
||||||
|
expected = Matrix([1, 2, 3, 4], (2, 2))
|
||||||
|
|
||||||
|
self.assertEqual(expected, actual)
|
||||||
|
|
||||||
|
def test_should_raise_value_missmatch_error_while_dividing_with_other_than_scalar(self):
|
||||||
|
m = Matrix([1, 2, 3, 4], (2, 2))
|
||||||
|
o = ""
|
||||||
|
|
||||||
|
self.assertRaises(ValueError, lambda: m / o)
|
||||||
|
|
||||||
|
def test_should_mul_matrices_1(self):
|
||||||
|
m1 = Matrix([1, 2], (2, 1))
|
||||||
|
m2 = Matrix([3, 4], (1, 2))
|
||||||
|
|
||||||
|
actual = m1 * m2
|
||||||
|
expected = Matrix([3, 4, 6, 8], (2, 2))
|
||||||
|
|
||||||
|
self.assertEqual(expected, actual)
|
||||||
|
|
||||||
|
def test_should_mul_matrices_2(self):
|
||||||
|
m1 = Matrix([1, 2], (1, 2))
|
||||||
|
m2 = Matrix([3, 4], (2, 1))
|
||||||
|
|
||||||
|
actual = m1 * m2
|
||||||
|
expected = Matrix([11], (1, 1))
|
||||||
|
|
||||||
|
self.assertEqual(expected, actual)
|
||||||
|
|
||||||
|
def test_should_raise_shape_missmatch_error_while_multiplying_matrices(self):
|
||||||
|
m1 = Matrix([1, 2], (2, 1))
|
||||||
|
m2 = Matrix([3, 4], (2, 1))
|
||||||
|
|
||||||
|
self.assertRaises(ValueError, lambda: m1 * m2)
|
||||||
|
Loading…
Reference in New Issue
Block a user