1
0

Compare commits

...

10 Commits

16 changed files with 487 additions and 235 deletions

View File

@ -1,6 +1,32 @@
# Project for PWR # Project for PWR
Project in python for module "Praktikum Wissenschaftliches Rechnen" in "Applied Mathematics" at *TU Bergakademie Freiberg*. Project in python for module "Praktikum Wissenschaftliches Rechnen" in "Applied Mathematics" at *TU Bergakademie Freiberg*.
# Task # Task
Implement MPI parallel Matrix and Vector classes in Python and apply them to a numerical problem / algorithm. Implement MPI parallel Matrix and Vector classes in Python and apply them to a numerical problem / algorithm.
1. Diagonalmatrix times vector
2. Matrix from exercise 1 times vector
3. Conjugated Gradient
# Structure of mains
## Timings in Shell
If you want to measure time with `time` and the whole program, then use the `main_[name].py` files.
Within the files you can set the size `n` of the matrix and vector.
See pbs script [pwr_project.script](./pbs_scripts/pwr_project.script) for automatic use on the cluster.
Following pythin scripts are the entry point for the tasks:
- [Diagonalmatrix times Vector](./src/main_diag_vec.py): [main_diag_vec.py](./src/main_diag_vec.py)
- [Matrix from exercise 1 times Vector](./src/main_matrix_vec.py): [main_matrix_vec.py](./src/main_matrix_vec.py)
- [CG](./src/main_cg.py): [main_cg.py](./src/main_cg.py)
## Specific timings
If you want to measure only the times a operation needs (without initializing),
then use the `main_[name]_timeit.py` files.
The matrix/vector size `n` must be provided via command line,
e.g. `python3 main_cg.py 100` for the CG with a matrix size of `100`.
See pbs script [pwr_project_timeit.script](./pbs_scripts/pwr_project_timeit.script) for automatic use on the cluster.
Following pythin scripts are the entry point for the tasks:
- [Diagonalmatrix times Vector](./src/main_diag_vec_timeit.py): [main_diag_vec.py](./src/main_diag_vec_timeit.py)
- [Matrix from exercise 1 times Vector](./src/main_matrix_vec_timeit.py): [main_matrix_vec.py](./src/main_matrix_vec_timeit.py)
- [CG](./src/main_cg_timeit.py): [main_cg.py](./src/main_cg_timeit.py)
## Weak scaling
For the weak scaling measurements use pbs script [pwr_project_timeit_weak.script](./pbs_scripts/pwr_project_timeit_weak.script).

View File

@ -0,0 +1,63 @@
#!/bin/bash
## parameters
#PBS -N pwr_project
#PBS -q entry_teachingq
#PBS -l select=1:ncpus=32:mpiprocs=32:mem=512gb
#PBS -o pwr_project_log.out
#PBS -e pwr_project_log.err
module load python/gcc
module load openmpi/gcc
## environment
cd ~/pwr_project
## delete previous runs
rm pwr_project_log.*
## execute Diag-Vec
echo "---------------------" > times_diag_vec.txt
echo "Durchlauf `date`:" >> times_diag_vec.txt
echo "Invoke with size of 8:" >> times_diag_vec.txt
{ time mpiexec -n 8 python3 ./src/main_diag_vec.py ; } 2>> times_diag_vec.txt
echo "Invoke with size of 16:" >> times_diag_vec.txt
{ time mpiexec -n 16 python3 ./src/main_diag_vec.py ; } 2>> times_diag_vec.txt
echo "Invoke with size of 32:" >> times_diag_vec.txt
{ time mpiexec -n 32 python3 ./src/main_diag_vec.py ; } 2>> times_diag_vec.txt
echo "---------------------" >> times_diag_vec.txt
## execute Matrix-Vector
echo "---------------------" > times_matrix_vec.txt
echo "Durchlauf `date`:" >> times_matrix_vec.txt
echo "Invoke with size of 8:" >> times_matrix_vec.txt
{ time mpiexec -n 8 python3 ./src/main_matrix_vec.py ; } 2>> times_matrix_vec.txt
echo "Invoke with size of 16:" >> times_matrix_vec.txt
{ time mpiexec -n 16 python3 ./src/main_matrix_vec.py ; } 2>> times_matrix_vec.txt
echo "Invoke with size of 32:" >> times_matrix_vec.txt
{ time mpiexec -n 32 python3 ./src/main_matrix_vec.py ; } 2>> times_matrix_vec.txt
echo "---------------------" >> times_matrix_vec.txt
## execute CG
echo "---------------------" > times_cg.txt
echo "Durchlauf `date`:" >> times_cg.txt
echo "Invoke with size of 8:" >> times_cg.txt
{ time mpiexec -n 8 python3 ./src/main_cg.py ; } 2>> times_cg.txt
echo "Invoke with size of 16:" >> times_cg.txt
{ time mpiexec -n 16 python3 ./src/main_cg.py ; } 2>> times_cg.txt
echo "Invoke with size of 32:" >> times_cg.txt
{ time mpiexec -n 32 python3 ./src/main_cg.py ; } 2>> times_cg.txt
echo "---------------------" >> times_cg.txt
echo "" >> times_cg.txt

View File

@ -0,0 +1,37 @@
#!/bin/bash
## parameters
#PBS -N pwr_project_timeit
#PBS -q entry_teachingq
#PBS -l select=1:ncpus=32:mpiprocs=32:mem=512gb
#PBS -o pwr_project_timeit_log.out
#PBS -e pwr_project_timeit_log.err
module load python/gcc
module load openmpi/gcc
## environment
cd ~/pwr_project
## delete previous runs
rm pwr_project_timeit_log.*
N=10000
## execute Diag-Vec
echo "Diag-Vec"
mpiexec -n 8 python3 ./src/main_diag_vec_timeit.py $N
mpiexec -n 16 python3 ./src/main_diag_vec_timeit.py $N
mpiexec -n 32 python3 ./src/main_diag_vec_timeit.py $N
## execute Matrix-Vector
echo "Matrix-Vec"
mpiexec -n 8 python3 ./src/main_matrix_vec_timeit.py $N
mpiexec -n 16 python3 ./src/main_matrix_vec_timeit.py $N
mpiexec -n 32 python3 ./src/main_matrix_vec_timeit.py $N
## execute CG
echo "CG"
mpiexec -n 8 python3 ./src/main_cg_timeit.py $(expr $N / 10)
mpiexec -n 16 python3 ./src/main_cg_timeit.py $(expr $N / 10)
mpiexec -n 32 python3 ./src/main_cg_timeit.py $(expr $N / 10)

View File

@ -0,0 +1,36 @@
#!/bin/bash
## parameters
#PBS -N pwr_project_timeit_weak
#PBS -q entry_teachingq
#PBS -l select=1:ncpus=32:mpiprocs=32:mem=512gb
#PBS -o pwr_project_timeit_weak_log.out
#PBS -e pwr_project_timeit_weak_log.err
module load python/gcc
module load openmpi/gcc
## environment
cd ~/pwr_project
## delete previous runs
rm pwr_project_timeit_weak_log.*
N=10000
DN=$(expr 2 \* $N)
## execute Diag-Vec
echo "Diag-Vec"
mpiexec -n 8 python3 ./src/main_diag_vec_timeit.py $N
mpiexec -n 32 python3 ./src/main_diag_vec_timeit.py $DN
## execute Matrix-Vector
echo "Matrix-Vec"
mpiexec -n 8 python3 ./src/main_matrix_vec_timeit.py $N
mpiexec -n 32 python3 ./src/main_matrix_vec_timeit.py $DN
## execute CG
echo "CG"
mpiexec -n 8 python3 ./src/main_cg_timeit.py $(expr $N / 10)
mpiexec -n 32 python3 ./src/main_cg_timeit.py $(expr $DN / 10)

View File

@ -1,58 +1,35 @@
from mpi4py import MPI
from matrix_mpi import MatrixMPI as Matrix from matrix_mpi import MatrixMPI as Matrix
from vector_mpi import VectorMPI as Vector from vector_mpi import VectorMPI as Vector
comm = MPI.COMM_WORLD # from matrix import Matrix
size = comm.Get_size() # from vector import Vector
rank = comm.Get_rank()
def cg(n: int, A: Matrix, f: Vector, tol: float): def cg(A: Matrix, x0: Vector, b: Vector, tolerance: float = 1e-3, max_iterations: int = 1_000):
# Intialisierung des Startvektors x """
x = Vector([1] * n) Solves a system of linear equations of the form Ax = b numerically.
# Anzahl der Schritte :param A: The transformation matrix A
count = 0 :param x0: A vector to start the algorithm with
:param b: The solution vector of the system of linear equations, the right hand side
:param tolerance: The tolerance at which to stop the algorithm, default is 0.001
:param max_iterations: Maximum number of iterations, default is 1000
"""
iterations = 0
# Anfangswerte berechnen x = x0
r = f - A * x # Anfangsresiduum r = b - A * x
p = r # Anfangsabstiegsrichtung d = r
while r.norm() > tol and count < 1000: while r.norm() >= tolerance and iterations < max_iterations:
print(f"{count}. Iterationsschritt:\n") z = A * d
# print("Iterierte:", x)
# print("Residuumsnorm: ", r.norm())
z = A * p # Matrix-Vektorprodukt berechnen und speichern alpha = (r.T() * d) / (d.T() * z)
x = x + alpha * d
r = r - alpha * z
# Minimiere phi in Richung p um neue Iterierte x zu finden beta = -(r.T() * z) / (d.T() * z)
alpha = (r.T() * p) / (p.T() * z) # (np.dot(r , p)) / (np.dot(p , z)) d = r + beta * d
# print(alpha)
x = x + alpha * p # neue Itterierte x iterations = iterations + 1
r = r - alpha * z # neues Residuum return x
# Bestimmung der neuen Suchrichtung
beta = - (r.T() * z) / (p.T() * z) # (np.dot(r , z)) / (np.dot(p , z))
p = r + beta * p # neue konjugierte Abstiegsrichtung
count = count + 1
print(f"{rank} APFELSTRUDEL")
# if rank == 0:
# # Vergleich mit numpy-interner Lsg
# u = np.linalg.solve(np.array(A.get_data()), np.array(f.get_data()))
#
# print("Lösung mit CG-Verfahren:", x)
# print("Numpy interne Lösung:", u)
#
# if (Vector(u) - x).norm() > eps:
# print("Der CG-Algorithmus hat nicht richtig funktioniert!")
# else:
# print("Der CG-Algorithmus war erfolgreich.")
#
# plt.plot(x.get_data(), linewidth=2)
# plt.plot(u, linewidth=2)
#
# plt.show()

View File

@ -1,18 +0,0 @@
import numpy as np
import cg
from matrix_mpi import MatrixMPI as Matrix
from vector_mpi import VectorMPI as Vector
n = 1_00
h = 1 / (n - 1)
# Initialisierung der Matrix A und des Vektor f für LGS Au = f
A = Matrix(np.diag(-1 * np.ones(n - 1), k=1) + np.diag(2 * np.ones(n), k=0) + np.diag(-1 * np.ones(n - 1), k=-1))
f = Vector([h ** 2 * 2] * n)
# Toleranz epsilon
tol = 0.001
cg.cg(n, A, f, tol)

25
src/main_cg.py Normal file
View File

@ -0,0 +1,25 @@
from mpi4py import MPI
import cg
from matrix_mpi import MatrixMPI as Matrix
from vector_mpi import VectorMPI as Vector
# from matrix import Matrix
# from vector import Vector
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
n = 1_000
h = 1 / (n - 1)
A = Matrix([-1, 2, -1], structure="tridiagonal", n=n)
x0 = Vector([1] * n)
b = Vector([h**2 * 2] * n)
x = cg.cg(A, x0, b)
# if rank == 0:
# print(f"ranks = {size}: x = {x}")

27
src/main_cg_timeit.py Normal file
View File

@ -0,0 +1,27 @@
from mpi4py import MPI
import sys
import timeit
import cg
from matrix_mpi import MatrixMPI as Matrix
from vector_mpi import VectorMPI as Vector
# from matrix import Matrix
# from vector import Vector
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
n = int(sys.argv[1])
h = 1 / (n - 1)
A = Matrix([-1, 2, -1], structure="tridiagonal", n=n)
x0 = Vector([1] * n)
b = Vector([h**2 * 2] * n)
time = timeit.timeit(lambda: cg.cg(A, x0, b), number=1)
if rank == 0:
print(f"ranks = {size}: time = {time}")

21
src/main_diag_vec.py Normal file
View File

@ -0,0 +1,21 @@
from mpi4py import MPI
from matrix_mpi import MatrixMPI as Matrix
from vector_mpi import VectorMPI as Vector
# from matrix import Matrix
# from vector import Vector
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
n = 10_000
A = Matrix([3], structure="diagonal", offset=0, n=n)
v = Vector([7] * n)
x = A * v
# if rank == 0:
# print(f"ranks = {size}: x = {x}")

View File

@ -0,0 +1,23 @@
from mpi4py import MPI
import sys
import timeit
from matrix_mpi import MatrixMPI as Matrix
from vector_mpi import VectorMPI as Vector
# from matrix import Matrix
# from vector import Vector
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
n = int(sys.argv[1])
A = Matrix([3], structure="diagonal", offset=0, n=n)
v = Vector([7] * n)
time = timeit.timeit(lambda: A * v, number=1)
if rank == 0:
print(f"ranks = {size}: time = {time}s")

22
src/main_matrix_vec.py Normal file
View File

@ -0,0 +1,22 @@
from mpi4py import MPI
from matrix_mpi import MatrixMPI as Matrix
from vector_mpi import VectorMPI as Vector
# from matrix import Matrix
# from vector import Vector
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
n = 10_000
m_data = [(i / k) for i in range(1, n+1) for k in range(1, n+1)]
A = Matrix(m_data, (n, n))
v = Vector(list(range(1, n+1)))
x = A * v
# if rank == 0:
# print(f"ranks = {size}: x = {x}")

View File

@ -0,0 +1,24 @@
from mpi4py import MPI
import sys
import timeit
from matrix_mpi import MatrixMPI as Matrix
from vector_mpi import VectorMPI as Vector
# from matrix import Matrix
# from vector import Vector
comm = MPI.COMM_WORLD
size = comm.Get_size()
rank = comm.Get_rank()
n = int(sys.argv[1])
m_data = [(i / k) for i in range(1, n+1) for k in range(1, n+1)]
A = Matrix(m_data, (n, n))
v = Vector(list(range(1, n+1)))
time = timeit.timeit(lambda: A * v, number=1)
if rank == 0:
print(f"ranks = {size}: time = {time}s")

View File

@ -22,7 +22,6 @@ class Matrix:
- ``Matrix(list, str, int)``: will create a new square matrix of given size and structure of either \"unity\", \"diagonal\" or \"tridiagonal\" - ``Matrix(list, str, int)``: will create a new square matrix of given size and structure of either \"unity\", \"diagonal\" or \"tridiagonal\"
- ``Matrix(str, int)``: will create a new square matrix of given size and TODO - ``Matrix(str, int)``: will create a new square matrix of given size and TODO
:param data: Either a list or an numpy ndarray :param data: Either a list or an numpy ndarray
:param shape: A tuple containing the amount of rows and columns :param shape: A tuple containing the amount of rows and columns
:param structure: Either \"unity\", \"diagonal\" or \"tridiagonal\" :param structure: Either \"unity\", \"diagonal\" or \"tridiagonal\"
@ -84,6 +83,13 @@ class Matrix:
""" """
return self.__data__ return self.__data__
@staticmethod
def flatten_internal(matrices):
flattened_data = [element for matrix in matrices for row in matrix.get_data() for element in row]
rows = sum(matrix.__shape__[0] for matrix in matrices)
cols = matrices[0].__shape__[1]
return flattened_data, (rows, cols)
@staticmethod @staticmethod
def flatten(matrices: list): def flatten(matrices: list):
""" """
@ -95,13 +101,8 @@ class Matrix:
:return: A ``Matrix`` extended by all matrices in the list. :return: A ``Matrix`` extended by all matrices in the list.
:rtype: ``Matrix`` :rtype: ``Matrix``
""" """
flattened_data = [] flattened_data, shape = Matrix.flatten_internal(matrices)
rows = 0 return Matrix(flattened_data, shape)
for matrix in matrices:
flattened_data.extend(matrix.get_matrix())
rows += matrix.__shape__[0]
cols = matrices[0].__shape__[1]
return Matrix(flattened_data, (rows, cols))
def shape(self): def shape(self):
""" """
@ -110,13 +111,8 @@ class Matrix:
return self.__shape__ return self.__shape__
def __transpose_internal__(self): def __transpose_internal__(self):
rows = self.__shape__[0] rows, cols = self.__shape__
cols = self.__shape__[1] return [[self.__data__[i][j] for i in range(rows)] for j in range(cols)], (cols, rows)
transposed_data = [([0] * rows) for _ in range(cols)]
for i in range(rows):
for j in range(cols):
transposed_data[j][i] = self.__data__[i][j]
return transposed_data, (cols, rows)
def transpose(self): def transpose(self):
""" """
@ -140,6 +136,9 @@ class Matrix:
:param other: The object to compare to; must be either a ``Matrix``, a ``list`` or a ``numpy.ndarray`` :param other: The object to compare to; must be either a ``Matrix``, a ``list`` or a ``numpy.ndarray``
:return: True if data in the matrix are equal to the given data in other for each component, otherwise False :return: True if data in the matrix are equal to the given data in other for each component, otherwise False
""" """
if not isinstance(other, (Matrix, list, numpy.ndarray)):
raise ValueError("Matrix type is not comparable to type of given ``other``")
data_to_compare = other
if isinstance(other, Matrix): if isinstance(other, Matrix):
if self.__shape__ != other.__shape__: if self.__shape__ != other.__shape__:
return False return False
@ -150,45 +149,33 @@ class Matrix:
return False return False
elif isinstance(other, numpy.ndarray): elif isinstance(other, numpy.ndarray):
data_to_compare = other.tolist() data_to_compare = other.tolist()
else: return all(value == other_value
raise ValueError("Matrix type is not comparable to type of given ``other``") for row, other_row in zip(self.__data__, data_to_compare)
for value, other_value in zip(row, other_row))
for i in range(len(self.__data__)):
for j in range(len(self.__data__[i])):
if self.__data__[i][j] != data_to_compare[i][j]:
return False
return True
def __str__(self): def __str__(self):
return str(numpy.array(self.__data__)) return str(numpy.array(self.__data__))
def __neg_internal__(self): def __neg_internal__(self):
rows = range(self.__shape__[0]) return list(map(lambda row: [-value for value in row], self.__data__))
cols = range(self.__shape__[1])
return [[-(self.__data__[i][j]) for j in cols] for i in rows]
def __neg__(self): def __neg__(self):
return Matrix(self.__neg_internal__(), self.__shape__) return Matrix(self.__neg_internal__(), self.__shape__)
def __add_matrix_internal__(self, other): def __add_matrix_internal__(self, other):
rows = self.__shape__[0] return [list(map(sum, zip(*rows))) for rows in zip(self.__data__, other.__data__)]
cols = self.__shape__[1]
return [[(self.__data__[i][j] + other.__data__[i][j]) for j in range(cols)] for i in range(rows)]
def __add_scalar_internal__(self, other): def __add_scalar_internal__(self, other):
rows = self.__shape__[0] return [[value + other for value in row] for row in self.__data__]
cols = self.__shape__[1]
return [[(self.__data__[i][j] + other) for j in range(cols)] for i in range(rows)]
def __add__(self, other): def __add__(self, other):
if not isinstance(other, (Matrix, int, float)):
raise ValueError("Only a number or another ``Matrix`` can be added to a ``Matrix``")
if isinstance(other, Matrix): if isinstance(other, Matrix):
if self.__shape__ != other.__shape__: if self.__shape__ != other.__shape__:
raise ValueError("The shape of the operands must be the same") raise ValueError("The shape of the operands must be the same")
return Matrix(self.__add_matrix_internal__(other), self.__shape__) return Matrix(self.__add_matrix_internal__(other), self.__shape__)
elif isinstance(other, int) or isinstance(other, float):
return Matrix(self.__add_scalar_internal__(other), self.__shape__) return Matrix(self.__add_scalar_internal__(other), self.__shape__)
else:
raise ValueError("Only a number or another ``Matrix`` can be added to a ``Matrix``")
def __radd__(self, other): def __radd__(self, other):
return self + other return self + other
@ -200,28 +187,21 @@ class Matrix:
return -self + other return -self + other
def __truediv_scalar_internal__(self, other): def __truediv_scalar_internal__(self, other):
rows = self.__shape__[0] return [list(map(lambda value: value / other, row)) for row in self.__data__]
cols = self.__shape__[1]
return [[(self.__data__[i][j] / other) for j in range(cols)] for i in range(rows)]
def __truediv__(self, other): def __truediv__(self, other):
if isinstance(other, int) or isinstance(other, float): if not isinstance(other, (int, float)):
return Matrix(self.__truediv_scalar_internal__(other), self.__shape__)
else:
raise ValueError("A ``Matrix`` can only be divided ba a number") raise ValueError("A ``Matrix`` can only be divided ba a number")
return Matrix(self.__truediv_scalar_internal__(other), self.__shape__)
def __mul_rowmatrix_matrix__internal__(self, other): def __mul_rowmatrix_matrix__internal__(self, other):
cols = other.__shape__[1] rows, cols = self.__shape__[1], other.__shape__[1]
new_data = [0] * cols return [sum(self.__data__[0][j] * other.__data__[j][i] for j in range(rows)) for i in range(cols)]
for i in range(cols):
new_data[i] = sum([self.__data__[0][j] * other.__data__[j][i] for j in range(self.__shape__[1])])
return new_data
def __mul_matrix_internal__(self, other): def __mul_matrix_internal__(self, other):
if self.__shape__[0] == 1: if self.__shape__[0] == 1:
return self.__mul_rowmatrix_matrix__internal__(other) return self.__mul_rowmatrix_matrix__internal__(other)
rows = self.__shape__[0] rows, cols = self.__shape__[0], other.__shape__[1]
cols = other.__shape__[1]
new_data = [([0] * cols) for _ in range(rows)] new_data = [([0] * cols) for _ in range(rows)]
for i in range(rows): for i in range(rows):
for k in range(cols): for k in range(cols):
@ -229,9 +209,7 @@ class Matrix:
return new_data return new_data
def __mul_scalar_internal__(self, other): def __mul_scalar_internal__(self, other):
rows = range(self.__shape__[0]) return [list(map(lambda value: value * other, row)) for row in self.__data__]
cols = range(self.__shape__[1])
return [[(self.__data__[i][j] * other) for j in cols] for i in rows]
def __mul__(self, other): def __mul__(self, other):
if isinstance(other, Matrix): if isinstance(other, Matrix):
@ -247,32 +225,17 @@ class Matrix:
def __rmul__(self, other): def __rmul__(self, other):
return self * other return self * other
def get_abs_sum_of_squares(self):
return self.__abs_sum_of_squares__()
def __abs_sum_of_squares__(self): def __abs_sum_of_squares__(self):
rows = self.__shape__[0] return sum(abs(element) ** 2 for row in self.__data__ for element in row)
cols = self.__shape__[1]
abs_sum = 0
for i in range(rows):
for j in range(cols):
abs_sum += abs(self.__data__[i][j]) ** 2
return abs_sum
def __col_sums__(self): def __col_sums__(self):
rows = self.__shape__[0] return [sum(abs(row[j]) for row in self.__data__) for j in range(self.__shape__[1])]
cols = self.__shape__[1]
col_sums = [0] * cols
for j in range(cols):
for i in range(rows):
col_sums[j] += abs(self.__data__[i][j])
return col_sums
def __row_sums__(self): def __row_sums__(self):
rows = self.__shape__[0] return [sum(abs(value) for value in row) for row in self.__data__]
cols = self.__shape__[1]
row_sums = [0] * rows
for i in range(rows):
for j in range(cols):
row_sums[i] += abs(self.__data__[i][j])
return row_sums
def norm(self, f: str = "frobenius"): def norm(self, f: str = "frobenius"):
""" """

View File

@ -1,3 +1,5 @@
import math
import numpy import numpy
from mpi4py import MPI from mpi4py import MPI
@ -9,39 +11,75 @@ class MatrixMPI:
__mpi_size__ = __mpi_comm__.Get_size() __mpi_size__ = __mpi_comm__.Get_size()
__mpi_rank__ = __mpi_comm__.Get_rank() __mpi_rank__ = __mpi_comm__.Get_rank()
__data__: Matrix = None __data__ = None
__rank_subdata__ = None
__chunk__: list = None __chunk__: list = None
def __init__(self, data=None, shape=None, structure=None, model=None, offset=None, n=None): def __init__(self, data=None, shape=None, structure=None, model=None, offset=None, n=None):
"""
Creates a new matrix.
The type of the matrix depends on the signature and arguments.
- ``MatrixMPI(list)``: will create a new matrix with the given data in the list and its shape.
- ``MatrixMPI(numpy.ndarray)``: will create a new matrix with the given data in ndarray and its shape.
- ``MatrixMPI(list, (int,int))``: will create a new nxm matrix with the given rows and columns and data in list.
- ``MatrixMPI(list, str, int, int)``: will create a new square matrix of given size and structure of \"diagonal\"
- ``MatrixMPI(list, str, int)``: will create a new square matrix of given size and structure of either \"unity\", \"diagonal\" or \"tridiagonal\"
- ``MatrixMPI(str, int)``: will create a new square matrix of given size and TODO
:param data: Either a list or an numpy ndarray
:param shape: A tuple containing the amount of rows and columns
:param structure: Either \"unity\", \"diagonal\" or \"tridiagonal\"
:param model: TODO
:param offset: Offset to diagonal axis
:param n: Amount of rows of a square matrix or offset in case of diagonal structure
:type data: Matrix | list | numpy.ndarray
:type shape: (int, int)
:type structure: str
:type model: str
:type offset: int
:type n: int
:rtype: MatrixMPI
"""
if isinstance(data, Matrix):
self.__data__ = data
else:
self.__data__ = Matrix(data=data, shape=shape, structure=structure, model=model, offset=offset, n=n) self.__data__ = Matrix(data=data, shape=shape, structure=structure, model=model, offset=offset, n=n)
# Calculate how much rows are delegated to the rank
total_amount_of_rows = self.__data__.shape()[0] total_amount_of_rows = self.__data__.shape()[0]
chunks = numpy.array_split(list(range(total_amount_of_rows)), self.__mpi_size__) chunks = numpy.array_split(list(range(total_amount_of_rows)), self.__mpi_size__)
self.__chunk__ = chunks[self.__mpi_rank__].tolist() self.__chunk__ = chunks[self.__mpi_rank__].tolist()
# Store the delegated rows explicitly for calculations
rows = len(self.__chunk__)
cols = self.__data__.shape()[1]
self.__rank_subdata__ = Matrix(self.__data__[self.__chunk__], (rows, cols))
@staticmethod @staticmethod
def of(matrix: Matrix): def of(matrix: Matrix):
return MatrixMPI(matrix.get_data(), matrix.shape()) return MatrixMPI(matrix)
def __str__(self):
return str(self.__data__)
def shape(self): def shape(self):
return self.__data__.shape() return self.__data__.shape()
def get_rank_submatrix(self): def get_rank_subdata(self):
rows = len(self.__chunk__)
cols = self.__data__.shape()[1]
return Matrix(self.__data__[self.__chunk__], (rows, cols))
def get_matrix(self):
""" """
Returns the ``Matrix`` that is used internally Returns only the delegated rows of the rank as ``Matrix``
:return: The delegated rows as ``Matrix``
"""
return self.__rank_subdata__
def get_data(self):
"""
Returns the whole ``Matrix`` that is used internally
:return: The ``Matrix`` that is used internally :return: The ``Matrix`` that is used internally
""" """
return self.__data__ return self.__data__
def get_data(self): def get_internal_data(self):
""" """
Returns the raw data of the internal data structure Returns the raw data of the internal data structure
:return: The raw data of the internal data structure :return: The raw data of the internal data structure
@ -62,6 +100,9 @@ class MatrixMPI:
""" """
return self.transpose() return self.transpose()
def __str__(self):
return str(self.__data__)
def __eq__(self, other): def __eq__(self, other):
""" """
Return ``self==value`` Return ``self==value``
@ -70,21 +111,17 @@ class MatrixMPI:
:return: True if data in the matrix are equal to the given data in other for each component, otherwise False :return: True if data in the matrix are equal to the given data in other for each component, otherwise False
""" """
if isinstance(other, MatrixMPI): if isinstance(other, MatrixMPI):
return self.__data__ == other.__data__ return all(self.__mpi_comm__.allgather(self.__rank_subdata__ == other.__rank_subdata__))
else: else:
return self.__data__ == other return self.__data__ == other
def __neg__(self): def __neg__(self):
gathered_data = self.__mpi_comm__.gather(-self.get_rank_submatrix()) return MatrixMPI.of(Matrix.flatten(self.__mpi_comm__.allgather(-self.__rank_subdata__)))
data = self.__mpi_comm__.bcast(gathered_data)
return MatrixMPI.of(Matrix.flatten(data))
def __add__(self, other): def __add__(self, other):
if isinstance(other, MatrixMPI): if isinstance(other, MatrixMPI):
other = other.get_rank_submatrix() other = other.__rank_subdata__
gathered_data = self.__mpi_comm__.gather(self.get_rank_submatrix() + other) return MatrixMPI.of(Matrix.flatten(self.__mpi_comm__.allgather(self.__rank_subdata__ + other)))
data = self.__mpi_comm__.bcast(gathered_data)
return MatrixMPI.of(Matrix.flatten(data))
def __radd__(self, other): def __radd__(self, other):
return self + other return self + other
@ -96,16 +133,12 @@ class MatrixMPI:
return -self + other return -self + other
def __truediv__(self, other): def __truediv__(self, other):
gathered_data = self.__mpi_comm__.gather(self.get_rank_submatrix() / other) return MatrixMPI.of(Matrix.flatten(self.__mpi_comm__.allgather(self.__rank_subdata__ / other)))
data = self.__mpi_comm__.bcast(gathered_data)
return MatrixMPI.of(Matrix.flatten(data))
def __mul__(self, other): def __mul__(self, other):
if isinstance(other, MatrixMPI): if isinstance(other, MatrixMPI):
other = other.get_matrix() other = other.get_data()
gathered_data = self.__mpi_comm__.gather(self.get_rank_submatrix() * other) return MatrixMPI.of(Matrix.flatten(self.__mpi_comm__.allgather(self.__rank_subdata__ * other)))
data = self.__mpi_comm__.bcast(gathered_data)
return MatrixMPI.of(Matrix.flatten(data))
def __rmul__(self, other): def __rmul__(self, other):
return self * other return self * other
@ -121,6 +154,10 @@ class MatrixMPI:
:return: the norm as a number :return: the norm as a number
""" """
if f == "frobenius":
return math.sqrt(self.__mpi_comm__.allreduce(self.__rank_subdata__.get_abs_sum_of_squares()))
elif f == "row sum":
return max(self.__mpi_comm__.allgather(self.__rank_subdata__.norm(f)))
return self.__data__.norm(f) return self.__data__.norm(f)
def __getitem__(self, key): def __getitem__(self, key):

View File

@ -24,6 +24,19 @@ class Vector(Matrix):
else: else:
raise ValueError("data must be a ``list``, a ``numpy.ndarray`` or an integer for dimension") raise ValueError("data must be a ``list``, a ``numpy.ndarray`` or an integer for dimension")
@staticmethod
def flatten(vectors: list):
"""
Flattens a list of matrices into one bigger matrix.
The columns must match the first ``Matrix`` in the list and the rows can be arbitrarily.
:param vectors: A list of vectors.
:type vectors: list
:return: A ``Vector`` extended by all matrices in the list.
"""
flattened_data, shape = Matrix.flatten_internal(vectors)
return Vector(flattened_data, shape)
def __eq__(self, other): def __eq__(self, other):
""" """
Return ``self==value`` Return ``self==value``
@ -67,8 +80,7 @@ class Vector(Matrix):
raise ValueError("Only a number or another ``Vector`` can be added to a ``Vector``") raise ValueError("Only a number or another ``Vector`` can be added to a ``Vector``")
def __mul_vector_same_shape_internal__(self, other): def __mul_vector_same_shape_internal__(self, other):
rows = self.__shape__[0] rows, cols = self.__shape__
cols = self.__shape__[1]
if rows >= cols: if rows >= cols:
new_data = [(self.__data__[i][0] * other.__data__[i][0]) for i in range(rows)] new_data = [(self.__data__[i][0] * other.__data__[i][0]) for i in range(rows)]
else: else:
@ -76,8 +88,7 @@ class Vector(Matrix):
return new_data return new_data
def __mul_tensor_internal__(self, other): def __mul_tensor_internal__(self, other):
rows = self.__shape__[0] rows, cols = self.__shape__[0], other.__shape__[1]
cols = other.__shape__[1]
return [[self.__data__[i][0] * other.__data__[0][j] for j in range(cols)] for i in range(rows)], (rows, cols) return [[self.__data__[i][0] * other.__data__[0][j] for j in range(cols)] for i in range(rows)], (rows, cols)
def __mul__(self, other): def __mul__(self, other):
@ -99,31 +110,24 @@ class Vector(Matrix):
"a compatible ``Matrix`` or a scalar") "a compatible ``Matrix`` or a scalar")
def __mul_matrix_vector_internal__(self, other): def __mul_matrix_vector_internal__(self, other):
rows = other.__shape__[0] rows, vector_rows = other.__shape__[0], self.__shape__[0]
new_data = [0] * rows return [sum([other.__data__[i][j] * self.__data__[j][0] for j in range(vector_rows)]) for i in range(rows)]
for i in range(rows):
new_data[i] = sum([other.__data__[i][j] * self.__data__[j][0] for j in range(self.__shape__[0])])
return new_data
def __rmul__(self, other): def __rmul__(self, other):
if isinstance(other, Matrix): return Vector(self.__mul_matrix_vector_internal__(other)) if isinstance(other, Matrix) else self * other
return Vector(self.__mul_matrix_vector_internal__(other))
return self * other
def __truediv_vector_internal__(self, other): def __truediv_vector_internal__(self, other):
rows = self.__shape__[0] rows, cols = self.__shape__
cols = self.__shape__[1]
return [[(self.__data__[i][j] / other.__data__[i][j]) for j in range(cols)] for i in range(rows)] return [[(self.__data__[i][j] / other.__data__[i][j]) for j in range(cols)] for i in range(rows)]
def __truediv__(self, other): def __truediv__(self, other):
if not isinstance(other, (Vector, int, float)):
raise ValueError("A ``Vector`` can only be divided ba a number or another same-shaped ``Vector``")
if isinstance(other, Vector): if isinstance(other, Vector):
if self.__shape__ != other.__shape__: if self.__shape__ != other.__shape__:
raise ValueError("The ``Vector``s to be divided must have the same shape") raise ValueError("The ``Vector``s to be divided must have the same shape")
return Vector(self.__truediv_vector_internal__(other)) return Vector(self.__truediv_vector_internal__(other))
elif isinstance(other, int) or isinstance(other, float):
return Vector(super().__truediv_scalar_internal__(other)) return Vector(super().__truediv_scalar_internal__(other))
else:
raise ValueError("A ``Vector`` can only be divided ba a number or another same-shaped ``Vector``")
def norm(self, **kwargs): def norm(self, **kwargs):
""" """

View File

@ -1,45 +1,29 @@
import math
import numpy
from matrix_mpi import MatrixMPI from matrix_mpi import MatrixMPI
from vector import Vector from vector import Vector
class VectorMPI(MatrixMPI): class VectorMPI(MatrixMPI):
__data__: Vector = None
def __init__(self, data=None, shape=None): def __init__(self, data=None, shape=None):
if isinstance(data, Vector):
self.__data__ = data
else:
self.__data__ = Vector(data=data, shape=shape) self.__data__ = Vector(data=data, shape=shape)
# Calculate how much rows are delegated to the rank
total_amount_of_rows = self.__data__.shape()[0]
chunks = numpy.array_split(list(range(total_amount_of_rows)), self.__mpi_size__)
self.__chunk__ = chunks[self.__mpi_rank__].tolist()
# Store the delegated rows explicitly for calculations
self.__rank_subdata__ = Vector(self.__data__[self.__chunk__])
@staticmethod @staticmethod
def of(vector: Vector): def of(vector: Vector):
return VectorMPI(vector.get_data(), vector.shape()) return VectorMPI(vector)
def get_vector(self):
"""
Returns the ``Vector`` that is used internally
:return: The ``Vector`` that is used internally
"""
return self.__data__
def get_data(self):
"""
Returns the raw data of the internal data structure
:return: The raw data of the internal data structure
"""
return self.__data__.get_data()
def shape(self):
return self.__data__.shape()
def __eq__(self, other):
"""
Return ``self==value``
:param other: The object to compare to; must be either a ``Vector``, a ``list`` or a ``numpy.ndarray``
:return: True if data in the same-shaped vectors are equal to the given data in other for each component otherwise False
"""
if isinstance(other, VectorMPI):
return self.__data__ == other.__data__
else:
return self.__data__ == other
def transpose(self): def transpose(self):
""" """
@ -50,29 +34,36 @@ class VectorMPI(MatrixMPI):
def T(self): def T(self):
return self.transpose() return self.transpose()
def __str__(self):
return str(self.__data__)
def __neg__(self): def __neg__(self):
return VectorMPI.of(-self.__data__) return VectorMPI.of(-self.__data__)
def __add__(self, other): def __add__(self, other):
if isinstance(other, VectorMPI): if isinstance(other, VectorMPI):
other = other.__data__ other = other.__rank_subdata__
return VectorMPI.of(self.__data__ + other) return VectorMPI.of(Vector.flatten(self.__mpi_comm__.allgather(self.__rank_subdata__ + other)))
def __mul__(self, other): def __mul__(self, other):
if isinstance(other, VectorMPI): if isinstance(other, VectorMPI):
other = other.__data__ other = other.__data__
if isinstance(other, int) or isinstance(other, float):
result = Vector.flatten(self.__mpi_comm__.allgather(self.__rank_subdata__ * other))
else:
result = self.__data__ * other result = self.__data__ * other
return VectorMPI.of(result) if isinstance(result, Vector) else result return VectorMPI.of(result) if isinstance(result, Vector) else result
def __rmul__(self, other): def __rmul__(self, other):
if isinstance(other, MatrixMPI): if isinstance(other, MatrixMPI):
return VectorMPI.of(other.get_matrix() * self.get_vector()) return VectorMPI.of(Vector.flatten(self.__mpi_comm__.allgather(other.get_rank_subdata() * self.get_data())))
return self * other return self * other
def __truediv__(self, other): def __truediv__(self, other):
if isinstance(other, VectorMPI): if isinstance(other, VectorMPI):
other = other.__data__ other = other.__rank_subdata__
return VectorMPI.of(self.__data__ / other) return VectorMPI.of(Vector.flatten(self.__mpi_comm__.allgather(self.__rank_subdata__ / other)))
def norm(self, **kwargs): def norm(self, **kwargs):
""" """
@ -81,7 +72,7 @@ class VectorMPI(MatrixMPI):
:param kwargs: ignored :param kwargs: ignored
:return: the 2-norm of the vector :return: the 2-norm of the vector
""" """
return self.__data__.norm() return math.sqrt(self.__mpi_comm__.allreduce(self.__rank_subdata__.get_abs_sum_of_squares()))
def normalize(self): def normalize(self):
""" """
@ -90,10 +81,4 @@ class VectorMPI(MatrixMPI):
:return: the normalized vector :return: the normalized vector
""" """
return VectorMPI.of(self.__data__ / self.norm()) return VectorMPI.of(Vector.flatten(self.__mpi_comm__.allgather(self.__rank_subdata__ / self.norm())))
def __getitem__(self, key):
return self.__data__[key]
def __setitem__(self, key, value):
self.__data__[key] = value