import math import numpy from numpy import linalg class Matrix: """ This Matrix class represents a real 2D-matrix. """ __data__: list __shape__: (int, int) def __init__(self, data=None, shape=None, structure=None, model=None, offset=None, n=None): """ Creates a new matrix. The type of the matrix depends on the signature and arguments. - ``Matrix(list)``: will create a new matrix with the given data in the list and its shape. - ``Matrix(numpy.ndarray)``: will create a new matrix with the given data in ndarray and its shape. - ``Matrix(list, (int,int))``: will create a new nxm matrix with the given rows and columns and data in list. - ``Matrix(list, str, int, int)``: will create a new square matrix of given size and structure of \"diagonal\" - ``Matrix(list, str, int)``: will create a new square matrix of given size and structure of either \"unity\", \"diagonal\" or \"tridiagonal\" - ``Matrix(str, int)``: will create a new square matrix of given size and TODO :param data: Either a list or an numpy ndarray :param shape: A tuple containing the amount of rows and columns :param structure: Either \"unity\", \"diagonal\" or \"tridiagonal\" :param model: TODO :param offset: Offset to diagonal axis :param n: Amount of rows of a square matrix or offset in case of diagonal structure :type data: list | numpy.ndarray :type shape: (int, int) :type structure: str :type model: str :type offset: int :type n: int :rtype: Matrix """ # Case Matrix(str, int) if n is not None and model is not None: ... # TODO: what shall one do here? # Case: Matrix(list, str, int, int) elif n is not None and offset is not None and structure == "diagonal" and data is not None: diag = numpy.diag(data * (n - abs(offset)), offset) self.__data__ = diag.tolist() self.__shape__ = diag.shape # Case: Matrix(list, str, int) elif n is not None and structure is not None and data is not None: if structure == "unity": ... # TODO: what does it mean? elif structure == "tridiagonal": if len(data) != 3: raise ValueError("If structure is tridiagonal, then the given data must be of length 3") tridiag = numpy.diag([data[0]] * (n - 1), -1) + numpy.diag([data[1]] * n, 0) + numpy.diag( [data[2]] * (n - 1), 1) self.__data__ = tridiag.tolist() self.__shape__ = tridiag.shape # Case: Matrix(list, (int,int)) elif shape is not None and data is not None: self.__shape__ = shape self.__data__ = numpy.array(data).reshape(shape).tolist() # Case: Matrix(numpy.ndarray) or Matrix(list) elif data is not None: if isinstance(data, numpy.ndarray): try: data.shape[1] except IndexError: self.__shape__ = (data.shape[0], 1) else: self.__shape__ = (data.shape[0], data.shape[1]) elif isinstance(data, list): self.__shape__ = (len(data), len(data[0])) self.__data__ = data else: raise ValueError( "Only following signatures are allowed: " "(list), (numpy.ndarray), (list, tuple), (list, str, int), (list, str, int, int), (str, int)") def get_data(self): """ :return: the data of the matrix as a ``list`` """ return self.__data__ def shape(self): """ :return: the shape of the matrix, which is ``(rows, columns)`` """ return self.__shape__ def transpose(self): """ :return: the transpose of the matrix """ rows = self.__shape__[0] cols = self.__shape__[1] transposed_data = [[0 for _ in range(rows)] for _ in range(cols)] for i in range(rows): for j in range(cols): transposed_data[j][i] = self.__data__[i][j] return Matrix(transposed_data, (cols, rows)) def T(self): """ Same as ``matrix.transpose()`` :return: see ``matrix.transpose()`` """ return self.transpose() def __eq__(self, other): """ Return ``self==value`` :param other: The object to compare to; must be either a ``Matrix``, a ``list`` or a ``numpy.ndarray`` :return: True if data in the matrix are equal to the given data in other for each component, otherwise False """ if isinstance(other, Matrix): data_to_compare = other.__data__ if self.__shape__ != other.__shape__: return False elif isinstance(other, list): data_to_compare = other if self.__shape__[0] != len(other) or self.__shape__[1] != len(other[0]): return False elif isinstance(other, numpy.ndarray): data_to_compare = other.tolist() else: raise ValueError("Matrix type is not comparable to type of given ``other``") for i in range(len(self.__data__)): for j in range(len(self.__data__[i])): if self.__data__[i][j] != data_to_compare[i][j]: return False return True def __str__(self): return str(numpy.array(self.__data__)) def __neg__(self): rows = range(self.__shape__[0]) cols = range(self.__shape__[1]) return Matrix([[-(self.__data__[i][j]) for j in cols] for i in rows], self.__shape__) def __add_matrix_internal__(self, other): rows = self.__shape__[0] cols = self.__shape__[1] return [[(self.__data__[i][j] + other.__data__[i][j]) for j in range(cols)] for i in range(rows)] def __add_scalar_internal__(self, other): rows = self.__shape__[0] cols = self.__shape__[1] return [[(self.__data__[i][j] + other) for j in range(cols)] for i in range(rows)] def __add__(self, other): if isinstance(other, Matrix): if self.__shape__ != other.__shape__: raise ValueError("The shape of the operands must be the same") return Matrix(self.__add_matrix_internal__(other), self.__shape__) elif isinstance(other, int) or isinstance(other, float): return Matrix(self.__add_scalar_internal__(other), self.__shape__) else: raise ValueError("Only a number or another ``Matrix`` can be added to a ``Matrix``") def __radd__(self, other): return self + other def __sub__(self, other): return self + (-other) def __rsub__(self, other): return -self + other def __truediv_scalar_internal__(self, other): rows = self.__shape__[0] cols = self.__shape__[1] return [[(self.__data__[i][j] / other) for j in range(cols)] for i in range(rows)] def __truediv__(self, other): if isinstance(other, int) or isinstance(other, float): return Matrix(self.__truediv_scalar_internal__(other), self.__shape__) else: raise ValueError("A ``Matrix`` can only be divided ba a number") def __mul_matrix_internal__(self, other): rows = self.__shape__[0] cols = other.__shape__[1] new_data = [[0 for _ in range(rows)] for _ in range(cols)] for i in range(rows): for k in range(cols): new_data[i][k] = sum([self.__data__[i][j] * other.__data__[j][k] for j in range(self.__shape__[1])]) return new_data def __mul_scalar_internal__(self, other): cols = range(self.__shape__[1]) rows = range(self.__shape__[0]) return [[(self.__data__[i][j] * other) for j in cols] for i in rows] def __mul__(self, other): if isinstance(other, Matrix): if self.__shape__[1] != other.__shape__[0]: raise ValueError( "The amount of columns of the first operand must match the amount of rows of the second operand") return Matrix(self.__mul_matrix_internal__(other), (self.__shape__[0], other.__shape__[1])) elif isinstance(other, int) or isinstance(other, float): return Matrix(self.__mul_scalar_internal__(other), self.__shape__) else: raise ValueError("Only a number or another ``Matrix`` can be multiplied to a ``Matrix``") def __rmul__(self, other): return self * other def norm(self, f: str = "frobenius"): """ Calculates the norm of the matrix. A norm is a positive definit, absolute homogeneous and subadditive function. For Matrices a norm is also sub-multiplicative. :param f: The norm to be used, could be either "frobenius", "rowsum" or "colsum" :return: the norm as a number """ norm = 0 rows = self.__shape__[0] cols = self.__shape__[1] if f == "frobenius": abs_sum = 0 for i in range(rows): for j in range(cols): abs_sum += abs(self.__data__[i][j])**2 norm = math.sqrt(abs_sum) elif f == "col sum": row_sum = [0 for _ in range(cols)] for j in range(cols): for i in range(rows): row_sum[j] += abs(self.__data__[i][j]) norm = max(row_sum) elif f == "row sum": col_sum = [0 for _ in range(rows)] for i in range(rows): for j in range(cols): col_sum[i] += abs(self.__data__[i][j]) norm = max(col_sum) return norm def __getitem__(self, key): return numpy.array(self.__data__)[key].tolist() def __setitem__(self, key, value): manipulated_data = numpy.array(self.__data__) manipulated_data[key] = value self.__data__ = manipulated_data.tolist()