382 lines
12 KiB
Python
382 lines
12 KiB
Python
import numpy as np
|
|
from mpi4py import MPI
|
|
|
|
from matrix_mpi import MatrixMPI
|
|
from vector_mpi import VectorMPI
|
|
|
|
np.random.seed(0)
|
|
###############
|
|
# Setting up MPI
|
|
comm = MPI.COMM_WORLD
|
|
rank = comm.Get_rank()
|
|
size = comm.Get_size()
|
|
for i0 in range(size):
|
|
if i0 == rank:
|
|
print(f"Hello from rank {i0} of size {size}!")
|
|
comm.Barrier()
|
|
# Testing the vector class
|
|
comm.Barrier()
|
|
if rank == 0:
|
|
print("\n\nTesting the vector class --------------(output only from rank 0)---------------------\n\n")
|
|
###############
|
|
|
|
### 1a Initialization
|
|
if rank == 0:
|
|
print("Start 1a initialization")
|
|
# from list
|
|
n_x1 = 10
|
|
x1_list = [i0 for i0 in
|
|
range(n_x1)] # must work for 4 ranks, too, so even if entries are not evenly distributable between ranks
|
|
vec_x1 = VectorMPI(x1_list)
|
|
# from numpy array
|
|
n_x2 = 10000
|
|
x2_list = np.random.uniform(0, 1, n_x2)
|
|
vec_x2 = VectorMPI(x2_list)
|
|
if rank == 0:
|
|
print("End 1a\n")
|
|
comm.Barrier()
|
|
|
|
### 1b __str__ function, string representation
|
|
if rank == 0:
|
|
print("Start 1b string representation")
|
|
vec_x1_str = str(vec_x1)
|
|
vec_x2_str = str(vec_x2)
|
|
if rank == 0:
|
|
print(f"vec_x1 values: {vec_x1_str}")
|
|
print(f"vec_x2 values: {vec_x2_str}")
|
|
print("End 1b\n")
|
|
comm.Barrier()
|
|
|
|
### 1c shape and transpose
|
|
if rank == 0:
|
|
print("Start 1c shape and transpose")
|
|
# shape property of the vector
|
|
vec_x1_shape = vec_x1.shape()
|
|
vec_x2_T_shape = vec_x2.T().shape()
|
|
vec_x2_T_T_shape = vec_x2.T().T().shape()
|
|
if rank == 0:
|
|
print(f"vec_x1 has shape {vec_x1_shape} | must be ({n_x1},1)") # Hint: numpy.reshape
|
|
# transposition (property) of the vector, only "cosmetic" change
|
|
print(f"vec_x2.T() has shape {vec_x2_T_shape} | must be (1,{n_x2})")
|
|
print(f"vec_x2.T().T() has shape {vec_x2_T_T_shape} | must be ({n_x2},1)")
|
|
print("End 1c\n")
|
|
comm.Barrier()
|
|
|
|
### 1d addition and subtraction
|
|
if rank == 0:
|
|
print("Start 1d addition and subtraction ")
|
|
# initialization
|
|
n_a = 10
|
|
n_b = 10
|
|
a_list = [i0 for i0 in range(n_a)]
|
|
b_list = [1 / (i0 + 1) for i0 in range(n_b)]
|
|
a = VectorMPI(a_list)
|
|
b = VectorMPI(b_list)
|
|
# computation
|
|
x = a + b
|
|
y = a - b
|
|
numpy_x_compare_norm = (x - VectorMPI(np.array(a_list) + np.array(b_list))).norm()
|
|
numpy_y_compare_norm = (y - VectorMPI(np.array(a_list) - np.array(b_list))).norm()
|
|
if rank == 0:
|
|
print(f"norm(a + b - numpy) = {numpy_x_compare_norm} | must be < 1e-8")
|
|
print(f"norm(a - b - numpy) = {numpy_x_compare_norm} | must be < 1e-8")
|
|
try:
|
|
x_false = a + b.T()
|
|
except ValueError as e:
|
|
if rank == 0:
|
|
print("The correct result is this error: " + str(e))
|
|
else:
|
|
if rank == 0:
|
|
print("ERROR: It is required to raise a system error, e. g., ValueError, since dimensions mismatch!")
|
|
try:
|
|
x_false = a - b.T()
|
|
except ValueError as e:
|
|
if rank == 0:
|
|
print("The correct result is this error: " + str(e))
|
|
else:
|
|
if rank == 0:
|
|
print("ERROR:It is required to raise a system error, e. g., ValueError, since dimensions mismatch!")
|
|
if rank == 0:
|
|
print("End 1d\n")
|
|
comm.Barrier()
|
|
|
|
### 1e multiplication
|
|
if rank == 0:
|
|
print("Start 1e multiplication")
|
|
# initialization
|
|
n_a = 10
|
|
n_b = 10
|
|
a_list = [i0 for i0 in range(n_a)]
|
|
b_list = [1 / (i0 + 1) for i0 in range(n_b)]
|
|
a = VectorMPI(a_list)
|
|
b = VectorMPI(b_list)
|
|
# computation with vectors
|
|
x = a.T() * b # scalar
|
|
y = a * b # vector
|
|
numpy_x_compare_norm = np.linalg.norm(x - np.sum(np.array(a_list) * np.array(b_list)))
|
|
numpy_y_compare_norm = (y - VectorMPI(np.array(a_list) * np.array(b_list))).norm()
|
|
# numpy_z_compare_norm = (z - MatrixMPI(comm,np.outer(np.array(a_list),np.array(b_list)))).norm()
|
|
if rank == 0:
|
|
print(f"norm(a.T() * b - numpy) = {numpy_x_compare_norm} | must be < 1e-8")
|
|
print(f"norm(a * b - numpy) = {numpy_y_compare_norm} | must be < 1e-8")
|
|
# print(f"norm(b * a.T() - numpy) = \n{numpy_z_compare_norm} | must be 1e-8")
|
|
# computation with scalars
|
|
x = a * 5
|
|
y = 0.1 * b.T()
|
|
numpy_x_compare_norm = (x - VectorMPI(np.array(a_list) * 5)).norm()
|
|
numpy_y_compare_norm = (y - VectorMPI(np.array(b_list) * 0.1).T()).norm()
|
|
if rank == 0:
|
|
print(f"norm(a * 5 - numpy) = {numpy_x_compare_norm} | must be < 1e-8")
|
|
print(f"norm(0.1 * b.T() - numpy) = {numpy_y_compare_norm} | must be < 1e-8")
|
|
print("End 1e\n")
|
|
comm.Barrier()
|
|
|
|
### 1f division
|
|
if rank == 0:
|
|
print("Start 1f division")
|
|
# initialization
|
|
n_a = 10
|
|
n_b = 10
|
|
a_list = [i0 for i0 in range(n_a)]
|
|
b_list = [1 / (i0 + 1) for i0 in range(n_b)]
|
|
a = VectorMPI(a_list)
|
|
b = VectorMPI(b_list)
|
|
# computation with vectors
|
|
x = a / b
|
|
y = a / 5
|
|
numpy_x_compare_norm = (x - VectorMPI(np.array(a_list) / np.array(b_list))).norm()
|
|
numpy_y_compare_norm = (y - VectorMPI(np.array(a_list) / 5)).norm()
|
|
if rank == 0:
|
|
print(f"norm(a / b - numpy) = {numpy_x_compare_norm} | must be < 1e-8")
|
|
print(f"norm(a / 5 - numpy) = {numpy_y_compare_norm} | must be < 1e-8")
|
|
print("End 1f\n")
|
|
comm.Barrier()
|
|
|
|
### 1g norm
|
|
if rank == 0:
|
|
print("Start 1g norm")
|
|
# initialization
|
|
a_list = [1 / (i0 + 1) for i0 in range(10)]
|
|
a = VectorMPI(a_list)
|
|
# computation
|
|
a_norm = a.norm()
|
|
a_normalized = a.normalize()
|
|
a_normalized_str = str(a_normalized)
|
|
numpy_comparison_norm = (a_normalized - VectorMPI(np.array(a_list) / np.linalg.norm(a_list))).norm()
|
|
if rank == 0:
|
|
print(f"a_norm = {a_norm} | must be {np.linalg.norm(a_list)}")
|
|
print(f"norm(a_normalize-np.a_normalize) = {numpy_comparison_norm} | must be < 1e-8")
|
|
print("End 1g\n")
|
|
comm.Barrier()
|
|
|
|
### 1h negation
|
|
if rank == 0:
|
|
print("Start 1h negation")
|
|
# initialization
|
|
a_list = [1 / (i0 + 1) for i0 in range(10)]
|
|
a = VectorMPI(a_list)
|
|
# computation
|
|
x = -a
|
|
x_str = str(x)
|
|
if rank == 0:
|
|
print(f"-a = {x_str} | must be {-np.array(a_list)}")
|
|
print("End 1h\n")
|
|
comm.Barrier()
|
|
|
|
### 1i manipulation
|
|
if rank == 0:
|
|
print("Start 1i manipulation")
|
|
# initialization
|
|
n_a = 10
|
|
a_list = [1 / (i0 + 1) for i0 in range(n_a)]
|
|
a = VectorMPI(a_list)
|
|
a_idx = [1, 2, 9, 7, 8]
|
|
a_values = a[a_idx]
|
|
if rank == 0:
|
|
print(
|
|
f"a[{str(a_idx)}] = {str(a_values)} | must be {np.array(a_list).reshape(n_a, 1)[np.array(a_idx)].reshape(len(a_idx), )}")
|
|
a[a_idx] = [-1, -1, -1, -1, -1]
|
|
a_str = str(a)
|
|
np_a = np.array(a_list)
|
|
np_a[a_idx] = [-1, -1, -1, -1, -1]
|
|
if rank == 0:
|
|
print(f"a = {a_str} | must be {np_a}")
|
|
print("End 1i\n")
|
|
comm.Barrier()
|
|
|
|
###############
|
|
# Testing the matrix class
|
|
comm.Barrier()
|
|
if rank == 0:
|
|
print("\n\nTesting the matrix class -----------------------------------\n\n")
|
|
###############
|
|
|
|
### 2a Initialization
|
|
if rank == 0:
|
|
print("Start 2a initialization")
|
|
n_a1 = 10
|
|
n_a2 = 5
|
|
a_list = np.array([[(i0 + 1) * (i1 + 1) for i0 in range(n_a1)] for i1 in range(n_a2)])
|
|
A = MatrixMPI(a_list)
|
|
B = MatrixMPI(structure="tridiagonal", data=[-1, 2, -1], n=12)
|
|
c_list = [i0 for i0 in range(n_a1 * n_a1)]
|
|
C = MatrixMPI(c_list, shape=(n_a1, n_a1))
|
|
D = MatrixMPI(structure="tridiagonal", data=[-1, 2, -1], n=50)
|
|
# D = MatrixMPI(model="sheet1ex1", n=50)
|
|
if rank == 0:
|
|
print("End 2a\n")
|
|
comm.Barrier()
|
|
|
|
### 2b __str__ function, string representation
|
|
if rank == 0:
|
|
print("Start 2b string representation")
|
|
# print(B.__str__(full = True))
|
|
A_str = str(A)
|
|
B_str = str(B)
|
|
C_str = str(C)
|
|
D_str = str(D)
|
|
if rank == 0:
|
|
print(f"Matrix A (numbers):\n{A_str}")
|
|
print(f"Matrix B (tridiagonal):\n{B_str}")
|
|
print(f"Matrix C (list of numbers):\n{C_str}")
|
|
print(f"Matrix D (sheet1ex1):\n{D_str}")
|
|
print("End 2b\n")
|
|
comm.Barrier()
|
|
|
|
### 2c shape and transpose
|
|
if rank == 0:
|
|
print("Start 2c shape and transpose")
|
|
# Initialization
|
|
A_shape = A.shape()
|
|
A_T_shape = A.T().shape()
|
|
A_T_T_shape = A.T().T().shape()
|
|
if rank == 0:
|
|
print(f"A has shape {A_shape} | must be {np.array(a_list).shape}")
|
|
print(f"A.T() has shape {A_T_shape} | must be {np.array(a_list).T.shape}")
|
|
print(f"A.T().T() has shape {A_T_T_shape} | must be {np.array(a_list).T.T.shape}")
|
|
print("End 2c\n")
|
|
comm.Barrier()
|
|
|
|
# ### DEBUG norms ###
|
|
# mat = np.array([[(i0+1)*(i1+1) for i0 in range(10)] for i1 in range(5)])
|
|
# local_max_each_row = np.amax(np.abs(mat),axis=1)
|
|
# if rank == 0:
|
|
# print(f"Matrix\n{str(mat)}\nlocal max each row {str(local_max_each_row)}")
|
|
# # frobenius norm
|
|
# A = MatrixMPI(comm,mat)
|
|
# a_norm_fro = A.norm("frobenius")
|
|
# if rank == 0:
|
|
# print(f"A.norm('frobenius') = {a_norm_fro} | must be {np.linalg.norm(np.array([[(i0+1)*(i1+1) for i0 in range(10)] for i1 in range(5)]),'fro')}")
|
|
# # row sum norm
|
|
# a_norm_row = A.norm("row sum")
|
|
# if rank == 0:
|
|
# print(f"A.norm('row sum') = {a_norm_row} | must be {np.max(local_max_each_row)}")
|
|
# # col sum norm
|
|
|
|
|
|
### 2d addition and subtraction
|
|
if rank == 0:
|
|
print("Start 2d addition and subtraction ")
|
|
# Initialization
|
|
n = 10
|
|
A = MatrixMPI(structure="diagonal", data=[3], offset=0, n=n)
|
|
A21 = MatrixMPI(structure="diagonal", data=[-1], offset=-1, n=n)
|
|
A12 = MatrixMPI(structure="diagonal", data=[-1], offset=+1, n=n)
|
|
B = MatrixMPI(structure="diagonal", data=[1], offset=0, n=n)
|
|
# computation
|
|
C = A + A21 + A12 - B
|
|
D = C - MatrixMPI(structure='tridiagonal', data=[-1, 2, -1], n=n)
|
|
d_norm = D.norm()
|
|
A_str = str(5 + A - 3)
|
|
if rank == 0:
|
|
print(f"norm(A + A21 + A12 - B - tridiag) = {d_norm} | must be < 1e-8")
|
|
print(f"5+A-3 = \n{A_str}")
|
|
print("End 2d\n")
|
|
comm.Barrier()
|
|
|
|
### 2e multiplication
|
|
if rank == 0:
|
|
print("Start 2e multiplication")
|
|
# initialization
|
|
n = 10
|
|
a_mat = np.array([[(i0 + 1) / (i1 + 1) for i1 in range(8)] for i0 in range(n)])
|
|
b_mat = np.array([[(i0 + 1) / (i1 + 1) for i1 in range(n)] for i0 in range(8)])
|
|
c_mat = np.array([[(i0 + 1) / (i1 + 1) for i1 in range(n)] for i0 in range(n)])
|
|
d_mat = np.array([[(i0 + 1) / (i1 + 1) for i1 in range(17)] for i0 in range(n)])
|
|
A = MatrixMPI(a_mat)
|
|
B = MatrixMPI(b_mat)
|
|
C = MatrixMPI(c_mat)
|
|
D = MatrixMPI(d_mat)
|
|
x_vec = np.array([i0 + 1 for i0 in range(n)])
|
|
y_vec = np.array([n * (i0 + 1) for i0 in range(n)])
|
|
x = VectorMPI(x_vec)
|
|
y = VectorMPI(y_vec)
|
|
# computation matrix scalar
|
|
norm5 = (5 * A - MatrixMPI(5 * np.array(a_mat))).norm()
|
|
# computation matrix vector
|
|
norm6 = (C * x - VectorMPI(np.array(c_mat) @ np.array(x_vec))).norm()
|
|
norm7 = (D.T() * x - VectorMPI(np.array(d_mat).T @ np.array(x_vec))).norm()
|
|
y_shape = (D.T() * x).shape()
|
|
if rank == 0:
|
|
print(f"Norm of (5*A - np.(5*A)) is {norm5} | must be < 1e-8")
|
|
print(f"Norm of (C*x - np.(C*x)) is {norm6} | must be < 1e-8")
|
|
print(f"Norm of (D.T*x - np.(D.T*x)) is {norm7} | must be < 1e-8 | shape(D.T*x) is {y_shape} | must be (17,1)")
|
|
# computation matrix multiplication
|
|
A_str = str(A)
|
|
B_str = str(B)
|
|
if rank == 0:
|
|
print(f"DEBUG: A\n{A_str}\nDEBUG: B\n{B_str}")
|
|
norm1 = (A * B - MatrixMPI(np.array(a_mat) @ np.array(b_mat))).norm()
|
|
norm2 = (A.T() * A - MatrixMPI(np.array(a_mat).T @ np.array(a_mat))).norm()
|
|
norm3 = (A * A.T() - MatrixMPI(np.array(a_mat) @ np.array(a_mat).T)).norm()
|
|
norm4 = (B.T() * A.T() - MatrixMPI(np.array(b_mat).T @ np.array(a_mat).T)).norm()
|
|
if rank == 0:
|
|
print(f"Norm of (A*B - np.(A*B)) is {norm1} | must be < 1e-8")
|
|
print(f"Norm of (A.T()*A - np(A.T()*A)) is {norm2} | must be < 1e-8")
|
|
print(f"Norm of (A*A.T() - np(A*A.T())) is {norm3} | must be < 1e-8")
|
|
print(f"Norm of (B.T()*A.T() - np.(B.T()*A.T())) is {norm4} | must be < 1e-8")
|
|
print("End 2e\n")
|
|
comm.Barrier()
|
|
|
|
### 2f division
|
|
if rank == 0:
|
|
print("Start 2f division")
|
|
# initialization
|
|
A = MatrixMPI(a_mat)
|
|
# computation
|
|
print(f"Norm of (A/5 - np.(A/5)) is {(A / 5 - MatrixMPI(np.array(a_mat) / 5)).norm()} | must be < 1e-8")
|
|
if rank == 0:
|
|
print("End 2f\n")
|
|
comm.Barrier()
|
|
|
|
### 2g norm
|
|
if rank == 0:
|
|
print("Start 2g norm")
|
|
A = MatrixMPI(structure="tridiagonal", n=50, data=[-1, 2, -1])
|
|
print(f"Frobenius norm of tridiagonal matrix: {A.norm('frobenius')} | must be 17.263")
|
|
print(f"Row sum norm of tridiagonal matrix: {A.norm('row sum')} | must be 4")
|
|
print(f"Col sum norm of tridiagonal matrix: {A.norm('col sum')} | must be 4")
|
|
if rank == 0:
|
|
print("End 2g\n")
|
|
comm.Barrier()
|
|
|
|
### 2h negation
|
|
if rank == 0:
|
|
print("Start 2h negation")
|
|
A = MatrixMPI(structure="tridiagonal", n=50, data=[-1, 2, 1])
|
|
print(f"Norm of (A + (-A)) is {(A + (-A)).norm('frobenius')} | must be < 1e-8")
|
|
if rank == 0:
|
|
print("End 2h\n")
|
|
comm.Barrier()
|
|
|
|
### 2i manipulation
|
|
if rank == 0:
|
|
print("Start 2i manipulation")
|
|
A = MatrixMPI(structure="tridiagonal", n=10, data=[-1, 2, 1])
|
|
A[1, 1] = 4
|
|
A[[1, 2, 3], 2] = [-5, -10, 100]
|
|
print(str(A))
|
|
if rank == 0:
|
|
print("End 2i\n")
|
|
comm.Barrier()
|