uebung 03 exercise 04
This commit is contained in:
parent
25d77e62e0
commit
81ae3a34e7
41
uebung_03/exercise_04/exercise_04.py
Normal file
41
uebung_03/exercise_04/exercise_04.py
Normal file
@ -0,0 +1,41 @@
|
||||
from mpi4py import MPI
|
||||
import numpy as np
|
||||
import math
|
||||
import sys
|
||||
|
||||
def dot_product(a, x):
|
||||
result = 0
|
||||
for i in range(len(a)):
|
||||
result += a[i] * x[i]
|
||||
return result
|
||||
|
||||
def row(i):
|
||||
row = []
|
||||
for j in range(1, n+1):
|
||||
row.append(i / j)
|
||||
return row
|
||||
|
||||
comm = MPI.COMM_WORLD
|
||||
rank = comm.Get_rank()
|
||||
size = comm.Get_size()
|
||||
|
||||
n = int(sys.argv[1])
|
||||
|
||||
x = list(range(1, n+1))
|
||||
|
||||
# each rank should compute almost the same amount of matrix.row * x
|
||||
# for this split the list [1,...,n+1] in sublists containing the rownumbers every rank has to compute
|
||||
# if n is a multiple of size all ranks have the same amount to compute, if not, the first (n % size) ranks compute each one more
|
||||
chunks = np.array_split(list(range(1,n+1)), size)
|
||||
|
||||
chunk = chunks[rank]
|
||||
sub_b = []
|
||||
for i in chunk:
|
||||
sub_b.append(dot_product(row(i), x)) # every rank computes its delegated rows times x
|
||||
|
||||
comm.barrier()
|
||||
|
||||
b = comm.gather(sub_b)
|
||||
|
||||
if rank == 0:
|
||||
b = np.concatenate(b).tolist() # b is a list of lists, np.concatenate 'flattens' the list of lists into an np.ndarray and tolist() to get an python list
|
30
uebung_03/exercise_04/exercise_04_visualization.py
Normal file
30
uebung_03/exercise_04/exercise_04_visualization.py
Normal file
@ -0,0 +1,30 @@
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
import timeit
|
||||
|
||||
nthreads = [1, 2, 4, 8, 16]
|
||||
sizes = [100, 400, 1600, 6400, 12800, 256000, 512000]
|
||||
|
||||
thread_timings = []
|
||||
for t in nthreads:
|
||||
print(f"Measure timing for {t} thread(s)")
|
||||
size_timings = []
|
||||
for s in sizes:
|
||||
print(f"--- Measure timing for size {s}")
|
||||
command = f"subprocess.run(\"mpirun --use-hwthread-cpus -n {t} python3 exercise_04.py {s}\", shell = True)"
|
||||
size_timings.append(timeit.timeit(command, setup = "import subprocess", number = 1) * 1000)
|
||||
thread_timings.append(size_timings)
|
||||
|
||||
plt.plot(sizes, thread_timings[0], "green", label=f"{nthreads[0]}")
|
||||
plt.plot(sizes, thread_timings[1], "blue", label=f"{nthreads[1]}")
|
||||
plt.plot(sizes, thread_timings[2], "purple", label=f"{nthreads[2]}")
|
||||
plt.plot(sizes, thread_timings[3], "red", label=f"{nthreads[3]}")
|
||||
plt.plot(sizes, thread_timings[4], "orange", label=f"{nthreads[4]}")
|
||||
|
||||
plt.title("Matrix-Vector-Multiplication time/threads comparison")
|
||||
plt.xlabel("Sizes")
|
||||
plt.ylabel("Time (ms)")
|
||||
plt.loglog()
|
||||
plt.legend(title = "# of Threads")
|
||||
|
||||
plt.show()
|
Loading…
Reference in New Issue
Block a user