uebung 03 exercise 04

This commit is contained in:
Niklas Birk 2023-11-24 19:05:20 +01:00
parent 25d77e62e0
commit 81ae3a34e7
2 changed files with 71 additions and 0 deletions

View File

@ -0,0 +1,41 @@
from mpi4py import MPI
import numpy as np
import math
import sys
def dot_product(a, x):
result = 0
for i in range(len(a)):
result += a[i] * x[i]
return result
def row(i):
row = []
for j in range(1, n+1):
row.append(i / j)
return row
comm = MPI.COMM_WORLD
rank = comm.Get_rank()
size = comm.Get_size()
n = int(sys.argv[1])
x = list(range(1, n+1))
# each rank should compute almost the same amount of matrix.row * x
# for this split the list [1,...,n+1] in sublists containing the rownumbers every rank has to compute
# if n is a multiple of size all ranks have the same amount to compute, if not, the first (n % size) ranks compute each one more
chunks = np.array_split(list(range(1,n+1)), size)
chunk = chunks[rank]
sub_b = []
for i in chunk:
sub_b.append(dot_product(row(i), x)) # every rank computes its delegated rows times x
comm.barrier()
b = comm.gather(sub_b)
if rank == 0:
b = np.concatenate(b).tolist() # b is a list of lists, np.concatenate 'flattens' the list of lists into an np.ndarray and tolist() to get an python list

View File

@ -0,0 +1,30 @@
import numpy as np
import matplotlib.pyplot as plt
import timeit
nthreads = [1, 2, 4, 8, 16]
sizes = [100, 400, 1600, 6400, 12800, 256000, 512000]
thread_timings = []
for t in nthreads:
print(f"Measure timing for {t} thread(s)")
size_timings = []
for s in sizes:
print(f"--- Measure timing for size {s}")
command = f"subprocess.run(\"mpirun --use-hwthread-cpus -n {t} python3 exercise_04.py {s}\", shell = True)"
size_timings.append(timeit.timeit(command, setup = "import subprocess", number = 1) * 1000)
thread_timings.append(size_timings)
plt.plot(sizes, thread_timings[0], "green", label=f"{nthreads[0]}")
plt.plot(sizes, thread_timings[1], "blue", label=f"{nthreads[1]}")
plt.plot(sizes, thread_timings[2], "purple", label=f"{nthreads[2]}")
plt.plot(sizes, thread_timings[3], "red", label=f"{nthreads[3]}")
plt.plot(sizes, thread_timings[4], "orange", label=f"{nthreads[4]}")
plt.title("Matrix-Vector-Multiplication time/threads comparison")
plt.xlabel("Sizes")
plt.ylabel("Time (ms)")
plt.loglog()
plt.legend(title = "# of Threads")
plt.show()