1
0

structure; ch1, ch2 beginnings

This commit is contained in:
Niklas Birk 2023-05-25 18:11:02 +02:00
parent 170d808f96
commit dcb2a274a7
7 changed files with 220 additions and 0 deletions

3
.gitignore vendored
View File

@ -301,3 +301,6 @@ TSWLatexianTemp*
# Uncomment the next line to have this generated file ignored.
#*Notes.bib
/.idea/
/out/

20
proseminar.bib Normal file
View File

@ -0,0 +1,20 @@
@book{heuser,
title = {Gew{\"o}hnliche Differentialgleichungen},
subtitle = {Einf{\"u}hrung in Lehre und Gebrauch},
series = {Mathematische Leitfäden},
author = {Heuser, Harro},
year = {2009},
edition = {6},
publisher = {Vieweg+Teubner Verlag},
isbn = {978-3-8348-0705-2}
}
@book{grune,
title = {Gew{\"o}hnliche Differentialgleichungen},
subtitle = {Eine Einführung aus der Perspektive der dynamischen Systeme},
author = {Gr{\"u}ne, Lars and Junge, Oliver},
year = {2009},
publisher = {Vieweg+Teubner Verlag},
series = {Bachelorkurs Mathematik},
isbn = {978-3-8348-9261-4}
}

109
proseminar.sty Normal file
View File

@ -0,0 +1,109 @@
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% Required packages and command changes %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% required base packages %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% language and encoding
\RequirePackage[utf8]{inputenc}
\RequirePackage[T1]{fontenc}
\RequirePackage[ngerman]{babel}
% BibLaTeX
\RequirePackage[hyperref,style=apa]{biblatex}
% math packages
\RequirePackage{amsmath} % general math
\RequirePackage{amsthm} % theorems
\RequirePackage{amssymb} % math symbols
\RequirePackage{mathtools} % coloneqq: nice ligatures of := and =:
\RequirePackage{stmaryrd} % lightning symbol
% other packages
\RequirePackage{enumerate} % for alphanumeric enumeration: (i), (ii), ...
\RequirePackage{csquotes} % language dependent correct quote signs
% use sans-serif font Computer Modern Bright
\RequirePackage{cmbright} % sans-serif fonts looking cleaner
\RequirePackage[lm]{sfmath} % bold math symbols in Latin Modern
\DeclareRobustCommand{\sm@ller}{%
\dimen@\f@size\p@
\ifdim \dimen@ > 12\p@
4
\dimen@=0.83333\dimen@
\else
\advance \dimen@ -2\p@
\fi
\math@fontsfalse
\fontsize{\the\dimen@}\z@
\selectfont
}
\newcommand{\textc}[1]{{\sm@ller\uppercase{#1}}}
% load late
\RequirePackage{hyperref} % hyperref package for refs
\hypersetup{
pdftitle={
tbd % TODO
},
pdfsubject={Skript zum Vortrag im Proseminar Algebra},
pdfauthor={Niklas Birk},
pdfkeywords={mathematics, calculus, analysis, linear algebra, ordinary differential equations, lecture notes, university}
}
\DeclareTextFontCommand{\emph}{\boldmath\bfseries}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% new commands and math operatos %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% common set symbols
\newcommand{\RR}{\mathbb{R}}
\newcommand{\CC}{\mathbb{C}}
% common symbols
\renewcommand{\i}{\mathrm{i}}
\newcommand{\e}{\mathrm{e}}
\renewcommand{\d}{\mathrm{d}}
\renewcommand{\Re}{\mathrm{Re}\,}
\renewcommand{\Im}{\mathrm{Im}\,}
\renewcommand{\vec}[1]{\mathfrak{#1}}
% use the more common variants of greek letters
\renewcommand{\phi}{\varphi}
\renewcommand{\epsilon}{\varepsilon}
% symbols for differentiation and integral
\newcommand{\dx}[1][x]{\ \d #1} % differential
\newcommand{\dfdx}[2]{\frac{\d #1}{\d #2}} % 1st derivative
\newcommand{\ddfdx}[3]{\frac{\d^{#3} #1}{\d #2^{#3}}} % nth derivative
% sets of the form {...; ...}
\newcommand{\set}[2]{\left\lbrace #1\ \middle|\ #2 \right\rbrace}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% theorems, definitions, etc. %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% style for definitions, unnumbered theorems: "Definition ([additional name]) \newline"
\newtheoremstyle{break*}{}{}{\itshape}{}{\bfseries}{}{\newline}{\thmname{#1}~\thmnote{(#3)}}
\theoremstyle{break*}
\newtheorem*{definition}{Definition}
% style for theorems, lemmata, propositions, corollary: "<counter> Theorem ([additional name]) \newline"
\newtheoremstyle{break}{}{}{\itshape}{}{\bfseries}{}{\newline}{\thmname{#1}~\thmnumber{#2}~\thmnote{(#3)}}
\theoremstyle{break}
\newtheorem{theorem}{Satz}[section]
\newtheorem{lemma}[theorem]{Lemma}
\newtheorem{corollary}[theorem]{Folgerung}
% style for examples: "Beispiel:"
\newtheoremstyle{nobreak*}{}{}{\normalfont}{}{\bfseries}{}{ }{}
\theoremstyle{nobreak*}
\newtheorem*{example*}{Beispiel:}
% proofs with bold name and qed at end
\renewenvironment{proof}[1][\proofname]{\par\textbf{#1.} }{\nobreak\hfill\ensuremath{\blacksquare}}

35
proseminar_skript.tex Normal file
View File

@ -0,0 +1,35 @@
\documentclass[11pt]{scrartcl}
\usepackage{proseminar}
\subject{Proseminar}
\title{
Tbd
}
\subtitle{TU Bergakademie Freiberg}
\author{Niklas Birk}
\date{16.06.2023 - SS23}
\addbibresource{proseminar.bib}
\nocite{*}
\makeindex
\begin{document}
\maketitle
\tableofcontents
\printbibliography
\newpage
\section{Lineare Differentialgleichungssysteme mit konstanten Koeffizienten}\label{sec:01}
\input{sections/01_ldgls}
\section{Existenz und Eindeutigkeit}\label{sec:02}
\input{sections/02_existenz_eindeutigkeit}
\section{Anwendung auf homogene lineare DGLS}\label{sec:03}
\input{sections/03_anwendung_auf_jnf}
\end{document}

19
sections/01_ldgls.tex Normal file
View File

@ -0,0 +1,19 @@
\begin{definition}
Seien $y_1,\dots,y_n: I \subseteq \RR \to \RR$ differenzierbar und $a_{jk} \in \RR$ für $j,k = 1,\dots,n$.
Dann heißt
\begin{equation}\tag{DGLS}\label{eq:dgls}
\begin{aligned}
y'_1(x) &= a_{11} y_1(x) + \dots + a_{1n} y_n(x)\\
y'_2(x) &= a_{21} y_1(x) + \dots + a_{2n} y_n(x)\\
&\vdots\\
y'_n(x) &= a_{n1} y_1(x) + \dots + a_{nn} y_n(x)
\end{aligned}
\end{equation}
ein \emph{homogenes lineares Differentialgleichungssystem} (DGLS) (1. Ordnung).\\
Das System~\eqref{eq:dgls} lässt sich auch kompakt in der Form
\begin{equation*}
\vec{y}'(x) = A \vec{y}(x)
\end{equation*}
schreiben, wobei $\vec{y}(x) = \begin{pmatrix} y_1(x)\\ \vdots\\ y_n(x) \end{pmatrix}, \vec{y}'(x) = \begin{pmatrix} y'_1(x)\\ \vdots\\ y'_n(x) \end{pmatrix}$
und $A \in \RR^{n \times n}$
\end{definition}

View File

@ -0,0 +1,34 @@
Eine~\eqref{eq:dgls} zusammen mit einem einem Anfangswertvektor
\begin{equation*}
\vec{y}(x_0) \coloneqq \vec{y}_0 \coloneqq \begin{pmatrix} y_{1_0}\\ \vdots\\ y_{n_0} \end{pmatrix} \in \RR^n
\end{equation*}
an der Stelle $x_0 \in \RR$ nennt man ein \emph{C\textc{auchy}-Problem} oder \emph{Anfangswertproblem}.
\begin{theorem}[Existenz- und Eindeutigkeit]
Vorgelegt sei ein C\textc{auchy}-Problem
\begin{equation}\tag{CP}\label{eq:cp}
\vec{y}'(x) = A \vec{y}(x), \qquad \vec{y}_0 \coloneqq \begin{pmatrix} y_{1_0}\\ \vdots\\ y_{n_0} \end{pmatrix}.
\end{equation}
Dann besitzt~\eqref{eq:cp} eine eindeutig bestimmte Lösung $\vec{y}$ auf $\RR$ mit der Form
\begin{equation}\tag{$\ast$}\label{eq:solution}
\vec{y}(x) = e^{(x - x_0) A} \vec{y}_0.
\end{equation}
\end{theorem}
\begin{proof}
\begin{itemize}
\item \underline{Existenz:}\\
Einsetzen in die rechte Seite von~\eqref{eq:solution} in~\eqref{eq:cp} liefert
\begin{equation*}
A \vec{y}(x) = A e^{(x - x_0) A} \vec{y}_0.
\end{equation*}
Zusammen mit~\eqref{eq:} folgt direkt, dass~\eqref{eq:solution} das C\textc{auchy}-Problem löst.
\item \underline{Eindeutigkeit:}\\
Angenommen $\vec{u}(x)$ sei eine weitere Lösung, d.h.~es gilt $\vec{u}' = A \vec{u},\ \vec{u}(x_0) = \vec{y}_0$.
Dann ist
\begin{align*}
\dfdx{}{x} \left( \right)
\end{align*}
\end{itemize}
\end{proof}

View File