minor changes
This commit is contained in:
@ -38,20 +38,16 @@
|
||||
Das Ergebnis von $\e^{t A} \in \RR^{n \times n}$ ist eine Matrix.
|
||||
Demnach ist $\e^{t A} \vec{u}(t) \in \RR^{n \times 1}$ ein Matrix-Vektor-Produkt, deren Komponenten sich durch
|
||||
\begin{equation*}
|
||||
(\e^{t A} \vec{u}(t))_i = \sum^n_{j=1} \e^{t A}_{ij} \cdot u_j(t)
|
||||
(\e^{t A} \vec{u}(t))_i = \sum^n_{j=1} \left( \e^{t A} \right)_{ij} \cdot u_j(t)
|
||||
\end{equation*}
|
||||
ergeben.
|
||||
Differenzieren der Komponenten, zusammen mit Linearität des Differentialoperators und der üblichen Produktregel, liefert
|
||||
\begin{align*}
|
||||
\dfdx{}{t}(\e^{t A} \vec{u}(t))_i
|
||||
&= \dfdx{}{t} \left( \sum^n_{j=1} \e^{t A}_{ij} \cdot u_j(t) \right)\\
|
||||
&= \dfdx{}{t} \left( \e^{t A}_{i1} \cdot u_j(t) + \dots + \e^{t A}_{in} \cdot u_j(t) \right)\\
|
||||
&= \dfdx{}{t} \left( \e^{t A}_{i1} \cdot u_j(t) \right) + \dots + \dfdx{}{t} \left( \e^{t A}_{in} \cdot u_j(t) \right)\\
|
||||
&= \left( \e^{t A}_{i1} \cdot \dfdx{u_j(t)}{t} + \dfdx{\e^{t A}_{i1}}{t} \cdot u_j(t) \right)
|
||||
+ \dots + \left( \e^{t A}_{in} \cdot \dfdx{u_j(t)}{t} + \dfdx{\e^{t A}_{in}}{t} \cdot u_j(t) \right)\\
|
||||
&= \sum^n_{j=1} \left( \e^{t A}_{ij} \cdot \dfdx{u_j(t)}{t} + \dfdx{\e^{t A}_{ij}}{t} \cdot u_j(t) \right)\\
|
||||
&= \sum^n_{j=1} \left( \e^{t A}_{ij} \cdot \dfdx{u_j(t)}{t} \right)
|
||||
+ \sum^n_{j=1} \left( \dfdx{\e^{t A}_{ij}}{t} \cdot u_j(t) \right).
|
||||
&= \dfdx{}{t} \left( \sum^n_{j=1} \left( \e^{t A} \right)_{ij} \cdot u_j(t) \right)
|
||||
= \sum^n_{j=1} \left( \left( \e^{t A} \right)_{ij} \cdot \dfdx{u_j(t)}{t} + \dfdx{\left( \e^{t A} \right)_{ij}}{t} \cdot u_j(t) \right)\\
|
||||
&= \sum^n_{j=1} \left( \left( \e^{t A} \right)_{ij} \cdot \dfdx{u_j(t)}{t} \right)
|
||||
+ \sum^n_{j=1} \left( \dfdx{\left( \e^{t A} \right)_{ij}}{t} \cdot u_j(t) \right).
|
||||
\end{align*}
|
||||
Das ist ganzheitlich betrachtet gerade
|
||||
\begin{equation*}
|
||||
|
Reference in New Issue
Block a user