1
0
proseminar_algebra/sections/01_ldgls_matrixexponential.tex

56 lines
2.5 KiB
TeX

\begin{definition}
Seien $y_1,\dots,y_n: \RR \to \RR$ differenzierbar und $a_{jk} \in \RR$ für $j,k = 1,\dots,n$.
Dann heißt
\begin{equation*}
\begin{aligned}
y'_1(t) &= a_{11} y_1(t) + \dots + a_{1n} y_n(t)\\
y'_2(t) &= a_{21} y_1(t) + \dots + a_{2n} y_n(t)\\
&\vdots\\
y'_n(t) &= a_{n1} y_1(t) + \dots + a_{nn} y_n(t)
\end{aligned}
\end{equation*}
ein \emph{homogenes lineares Differentialgleichungssystem} (DGLS) (1. Ordnung).\\
Das obige System lässt sich auch kompakt in der Form
\begin{equation}\tag{DGLS}\label{eq:dgls}
\vec{y}'(t) = A \vec{y}(t)
\end{equation}
schreiben, wobei $\vec{y}(t) = \begin{pmatrix} y_1(t)\\ \vdots\\ y_n(t) \end{pmatrix}, \vec{y}'(t) = \begin{pmatrix} y'_1(t)\\ \vdots\\ y'_n(t) \end{pmatrix}$
und $A \in \RR^{n \times n}$
\end{definition}
\begin{definition}
Ein~\ref{eq:dgls} zusammen mit einer Anfangsbedingung
\begin{equation*}
\vec{y}(t_0) = \vec{y}_0 \coloneqq \begin{pmatrix} y_{1_0}\\ \vdots\\ y_{n_0} \end{pmatrix} \in \RR^n
\end{equation*}
an einer Stelle $t_0 \in \RR$ nennt man ein \emph{C\textc{auchy}-Problem} oder \emph{Anfangswertproblem}.
\end{definition}
\begin{theorem}[Existenz und Eindeutigkeit]\label{thm:existenz-eindeutigkeit}
Vorgelegt sei ein C\textc{auchy}-Problem
\begin{equation}\tag{CP}\label{eq:cp}
\vec{y}'(t) = A \vec{y}(t), \qquad \vec{y}(t_0) = \vec{y}_0 \coloneqq \begin{pmatrix} y_{1_0}\\ \vdots\\ y_{n_0} \end{pmatrix}.
\end{equation}
Dann besitzt~\eqref{eq:cp} eine eindeutig bestimmte Lösung $\vec{y}$ auf $\RR$ mit der Form
\begin{equation}\tag{$\ast$}\label{eq:solution}
\vec{y}(t) = e^{(t - t_0) A} \vec{y}_0.
\end{equation}
\end{theorem}
\begin{proof}
\begin{itemize}
\item \underline{Existenz:}\\
Einsetzen von~\eqref{eq:solution} in die rechte Seite von~\eqref{eq:cp} liefert
\begin{equation*}
A \vec{y}(t) = A e^{(t - t_0) A} \vec{y}_0.
\end{equation*}
Zusammen mit~\eqref{*} folgt direkt, dass~\eqref{eq:solution} das C\textc{auchy}-Problem löst.
\item \underline{Eindeutigkeit:}\\
Angenommen $\vec{u}(t)$ sei eine weitere Lösung, d.h.~es gilt $\vec{u}' = A \vec{u},\ \vec{u}(t_0) = \vec{y}_0$.
Dann ist
\begin{align*}
\dfdx{}{x} \left( \text{tbc.} \right)
\end{align*}
\end{itemize}
\end{proof}