1
0
pwr_project/src/matrix.py

265 lines
9.9 KiB
Python

import math
import numpy
from numpy import linalg
class Matrix:
"""
This Matrix class represents a real 2D-matrix.
"""
__data__: list
__shape__: (int, int)
def __init__(self, data=None, shape=None, structure=None, model=None, offset=None, n=None):
"""
Creates a new matrix.
The type of the matrix depends on the signature and arguments.
- ``Matrix(list)``: will create a new matrix with the given data in the list and its shape.
- ``Matrix(numpy.ndarray)``: will create a new matrix with the given data in ndarray and its shape.
- ``Matrix(list, (int,int))``: will create a new nxm matrix with the given rows and columns and data in list.
- ``Matrix(list, str, int, int)``: will create a new square matrix of given size and structure of \"diagonal\"
- ``Matrix(list, str, int)``: will create a new square matrix of given size and structure of either \"unity\", \"diagonal\" or \"tridiagonal\"
- ``Matrix(str, int)``: will create a new square matrix of given size and TODO
:param data: Either a list or an numpy ndarray
:param shape: A tuple containing the amount of rows and columns
:param structure: Either \"unity\", \"diagonal\" or \"tridiagonal\"
:param model: TODO
:param offset: Offset to diagonal axis
:param n: Amount of rows of a square matrix or offset in case of diagonal structure
:type data: list | numpy.ndarray
:type shape: (int, int)
:type structure: str
:type model: str
:type offset: int
:type n: int
:rtype: Matrix
"""
# Case Matrix(str, int)
if n is not None and model is not None:
... # TODO: what shall one do here?
# Case: Matrix(list, str, int, int)
elif n is not None and offset is not None and structure == "diagonal" and data is not None:
diag = numpy.diag(data * (n - abs(offset)), offset)
self.__data__ = diag.tolist()
self.__shape__ = diag.shape
# Case: Matrix(list, str, int)
elif n is not None and structure is not None and data is not None:
if structure == "unity":
... # TODO: what does it mean?
elif structure == "tridiagonal":
if len(data) != 3:
raise ValueError("If structure is tridiagonal, then the given data must be of length 3")
tridiag = numpy.diag([data[0]] * (n - 1), -1) + numpy.diag([data[1]] * n, 0) + numpy.diag(
[data[2]] * (n - 1), 1)
self.__data__ = tridiag.tolist()
self.__shape__ = tridiag.shape
# Case: Matrix(list, (int,int))
elif shape is not None and data is not None:
self.__shape__ = shape
self.__data__ = numpy.array(data).reshape(shape).tolist()
# Case: Matrix(numpy.ndarray) or Matrix(list)
elif data is not None:
if isinstance(data, numpy.ndarray):
try:
data.shape[1]
except IndexError:
self.__shape__ = (data.shape[0], 1)
else:
self.__shape__ = (data.shape[0], data.shape[1])
elif isinstance(data, list):
self.__shape__ = (len(data), len(data[0]))
self.__data__ = data
else:
raise ValueError(
"Only following signatures are allowed: "
"(list), (numpy.ndarray), (list, tuple), (list, str, int), (list, str, int, int), (str, int)")
def get_data(self):
"""
:return: the data of the matrix as a ``list``
"""
return self.__data__
def shape(self):
"""
:return: the shape of the matrix, which is ``(rows, columns)``
"""
return self.__shape__
def transpose(self):
"""
:return: the transpose of the matrix
"""
rows = self.__shape__[0]
cols = self.__shape__[1]
transposed_data = [[0 for _ in range(rows)] for _ in range(cols)]
for i in range(rows):
for j in range(cols):
transposed_data[j][i] = self.__data__[i][j]
return Matrix(transposed_data, (cols, rows))
def T(self):
"""
Same as ``matrix.transpose()``
:return: see ``matrix.transpose()``
"""
return self.transpose()
def __eq__(self, other):
"""
Return ``self==value``
:param other: The object to compare to; must be either a ``Matrix``, a ``list`` or a ``numpy.ndarray``
:return: True if data in the matrix are equal to the given data in other for each component, otherwise False
"""
if isinstance(other, Matrix):
data_to_compare = other.__data__
if self.__shape__ != other.__shape__:
return False
elif isinstance(other, list):
data_to_compare = other
if self.__shape__[0] != len(other) or self.__shape__[1] != len(other[0]):
return False
elif isinstance(other, numpy.ndarray):
data_to_compare = other.tolist()
else:
raise ValueError("Matrix type is not comparable to type of given ``other``")
for i in range(len(self.__data__)):
for j in range(len(self.__data__[i])):
if self.__data__[i][j] != data_to_compare[i][j]:
return False
return True
def __str__(self):
return str(numpy.array(self.__data__))
def __neg__(self):
rows = range(self.__shape__[0])
cols = range(self.__shape__[1])
return Matrix([[-(self.__data__[i][j]) for j in cols] for i in rows], self.__shape__)
def __add_matrix_internal__(self, other):
rows = self.__shape__[0]
cols = self.__shape__[1]
return [[(self.__data__[i][j] + other.__data__[i][j]) for j in range(cols)] for i in range(rows)]
def __add_scalar_internal__(self, other):
rows = self.__shape__[0]
cols = self.__shape__[1]
return [[(self.__data__[i][j] + other) for j in range(cols)] for i in range(rows)]
def __add__(self, other):
if isinstance(other, Matrix):
if self.__shape__ != other.__shape__:
raise ValueError("The shape of the operands must be the same")
return Matrix(self.__add_matrix_internal__(other), self.__shape__)
elif isinstance(other, int) or isinstance(other, float):
return Matrix(self.__add_scalar_internal__(other), self.__shape__)
else:
raise ValueError("Only a number or another ``Matrix`` can be added to a ``Matrix``")
def __radd__(self, other):
return self + other
def __sub__(self, other):
return self + (-other)
def __rsub__(self, other):
return -self + other
def __truediv_scalar_internal__(self, other):
rows = self.__shape__[0]
cols = self.__shape__[1]
return [[(self.__data__[i][j] / other) for j in range(cols)] for i in range(rows)]
def __truediv__(self, other):
if isinstance(other, int) or isinstance(other, float):
return Matrix(self.__truediv_scalar_internal__(other), self.__shape__)
else:
raise ValueError("A ``Matrix`` can only be divided ba a number")
def __mul_matrix_internal__(self, other):
rows = self.__shape__[0]
cols = other.__shape__[1]
new_data = [[0 for _ in range(rows)] for _ in range(cols)]
for i in range(rows):
for k in range(cols):
new_data[i][k] = sum([self.__data__[i][j] * other.__data__[j][k] for j in range(self.__shape__[1])])
return new_data
def __mul_scalar_internal__(self, other):
cols = range(self.__shape__[1])
rows = range(self.__shape__[0])
return [[(self.__data__[i][j] * other) for j in cols] for i in rows]
def __mul__(self, other):
if isinstance(other, Matrix):
if self.__shape__[1] != other.__shape__[0]:
raise ValueError(
"The amount of columns of the first operand must match the amount of rows of the second operand")
return Matrix(self.__mul_matrix_internal__(other), (self.__shape__[0], other.__shape__[1]))
elif isinstance(other, int) or isinstance(other, float):
return Matrix(self.__mul_scalar_internal__(other), self.__shape__)
else:
raise ValueError("Only a number or another ``Matrix`` can be multiplied to a ``Matrix``")
def __rmul__(self, other):
return self * other
def norm(self, f: str = "frobenius"):
"""
Calculates the norm of the matrix.
A norm is a positive definit, absolute homogeneous and subadditive function.
For Matrices a norm is also sub-multiplicative.
:param f: The norm to be used, could be either "frobenius", "rowsum" or "colsum"
:return: the norm as a number
"""
norm = 0
rows = self.__shape__[0]
cols = self.__shape__[1]
if f == "frobenius":
abs_sum = 0
for i in range(rows):
for j in range(cols):
abs_sum += abs(self.__data__[i][j])**2
norm = math.sqrt(abs_sum)
elif f == "col sum":
row_sum = [0 for _ in range(cols)]
for j in range(cols):
for i in range(rows):
row_sum[j] += abs(self.__data__[i][j])
norm = max(row_sum)
elif f == "row sum":
col_sum = [0 for _ in range(rows)]
for i in range(rows):
for j in range(cols):
col_sum[i] += abs(self.__data__[i][j])
norm = max(col_sum)
return norm
def __getitem__(self, key):
return numpy.array(self.__data__)[key].tolist()
def __setitem__(self, key, value):
manipulated_data = numpy.array(self.__data__)
manipulated_data[key] = value
self.__data__ = manipulated_data.tolist()